

Optimization of Neutrino Fluxes for Future Long Baseline Neutrino Experiment

www.laguna-science.eu

Silvestro di Luise*,(1), Andrea Longhin(2), André Rubbia(1) On behalf of the LAGUNA-LBNO collaboration

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

•Deepest mine in Europe: 1400 m (4000 m.w.e.)

saclay

(1) Swiss Federal Institute of Technology, ETH, Zürich, Switzerland (2) IRFU CEA, Saclay, France *Silvestro.Di.Luise@cern.ch

Pyhäsalmi **CERN**

LBNO: Long Baseline Neutrino Oscillation experiment

The LBNO collaboration has submitted an Expression of Interest (SPSC-EOI-007) for a next generation neutrino oscillation experiment between CERN and the Pyhäsalmi mine in Finland, 2300 km distant.

Physics program:

➤ Determination of the neutrino Mass Hierarchy

 \triangleright Measurement of $\delta_{CP} \rightarrow$ **CP-Violation** in the leptonic sector with a significant better sensitivity w.r.t. present and near future experiments

The proposed experimental setup consists of:

- ✓ New conventional neutrino beam facility
- ✓ Next generation underground neutrino observatory

Double phase liquid Argon (LAr) detector, 20→100 kton fiducial volume Magnetized Iron calorimeter

Other physics goals achievable with a deep underground massive neutrino detector: ➤ Search for proton decay (test of GUT)

➤ Neutrino Astrophysics

Pyhäsalmi Site

Energy dependence of the oscillation **Target** probabilities $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ for a baseline L=2300 km. **Protons**

→ toroidal magnetic field in the horns/reflector volume.

Angular range: π 's (K's) produced with an angle $\theta \approx [30,80]$ mrad ($\langle p_t \rangle \approx 0.3$ GeV/c @ production).

Neutrino beam tuning

Sensitivity to CP-Violation

Improved beam neutrino flux considered

Neutrino energy reconstructed from final state events.

 ν_{τ} background treated with kinematical analysis.

Integrated pot: 1.5×10²¹ Target Mass: 20 kton

matter density 4%

Running mode: 25%:75% sharing neutrino:anti-neutrino

Systematic errors signals normalizations 5% (v_{τ} :50%) horn polarity 5% NC, CC background 5%

Related Contribution: S. di Luise, "LAGUNA-LBNO: a very Long Baseline Neutrino Oscillation experiment". Session: Neutrinos