SEARCH FOR $\nu_\mu \rightarrow \nu_\tau$ OSCILLATIONS:
STATUS OF THE OPERA EXPERIMENT

Marilisa De Serio
Università degli Studi di Bari & INFN
On behalf of the OPERA Collaboration
SEARCH FOR $\nu_\mu \rightarrow \nu_\tau$ OSCILLATIONS:
STATUS OF THE OPERA EXPERIMENT

- The OPERA experiment:
 - Physics goal
 - ν_τ detection principle
 - Detector
 - Status of data-taking and analysis

- $\nu_\mu \rightarrow \nu_\tau$ oscillation results

- Preliminary results on $\nu_\mu \rightarrow \nu_e$ oscillation search
OPERA: Oscillation Project with Emulsion tRacking Apparatus

- Long baseline neutrino oscillation experiment
- Aim: Direct detection of $\nu_\mu \rightarrow \nu_\tau$ oscillations in appearance mode covering the whole interesting region of the parameter space indicated by atmospheric neutrino data
- CNGS (CERN Neutrinos to Gran Sasso) ν_μ beam optimised for ν_τ appearance
CNGS beam

Conventional ν_μ beam

Beam parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< E_{\nu_\mu} >$</td>
<td>17 GeV</td>
</tr>
<tr>
<td>$(\nu_e + \bar{\nu}e)/\nu\mu$</td>
<td>0.89, 0.06 %</td>
</tr>
<tr>
<td>$\bar{\nu}\mu/\nu\mu$</td>
<td>2.1 %</td>
</tr>
<tr>
<td>ν_τ prompt</td>
<td>negligible</td>
</tr>
<tr>
<td>pot/year</td>
<td>4.5×10^{19}</td>
</tr>
</tbody>
</table>

Contaminations given in terms of interaction rates in OPERA

Nominal intensity: 22.5×10^{19} p.o.t.

Expected events: 7.6 signal, 0.8 background

Gran Sasso National Laboratory

Largest underground laboratory for astro-particle physics

1400 m rock shield (cosmic μ flux reduction $\sim 10^{-6}$)

INFN - LNGS
L’Aquila (Italy), 120 km from Rome
ν\textsubscript{τ} detection principle

Event-by-event separation of ν\textsubscript{τ} CC interactions from dominant ν\textsubscript{μ} interactions by direct observation of τ lepton decay

Requirements:

- Large target mass to compensate for small neutrino interaction cross-section
- Micrometric resolution to observe τ decay kink

⇒ Nuclear emulsions

<table>
<thead>
<tr>
<th>τ decay channel</th>
<th>B.R. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ → μ</td>
<td>17.7</td>
</tr>
<tr>
<td>τ → e</td>
<td>17.8</td>
</tr>
<tr>
<td>τ → h</td>
<td>49.5</td>
</tr>
<tr>
<td>τ → 3h</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Target segmented into basic units called bricks. Brick: sandwich of 57 emulsion films interleaved with 1mm-thick lead plates

Total target mass ~ 1.25 kt (about 150000 bricks)
ν_τ detection principle

- Event-by-event separation of ν_τ CC interactions from dominant ν_μ interactions by direct observation of τ lepton decay

Requirements:
- Large target mass to compensate for small neutrino interaction cross-section
- Micrometric resolution to observe τ decay *kink* ➞ Nuclear emulsions
- High muon identification efficiency to reduce charm background; event region pre-selection ➞ Electronic detectors

<table>
<thead>
<tr>
<th>τ decay channel</th>
<th>B.R. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ → μ</td>
<td>17.7</td>
</tr>
<tr>
<td>τ → e</td>
<td>17.8</td>
</tr>
<tr>
<td>τ → h</td>
<td>49.5</td>
</tr>
<tr>
<td>τ → 3h</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Target segmented into basic units called *bricks*. Brick: *sandwich* of 57 emulsion films interleaved with 1mm-thick lead plates

Total target mass ~ 1.25 kt (about 150000 bricks)
OPERA detector

First ν_e candidate

$\sigma \approx 10 \text{ mm}$

$\sigma \approx 25 \text{ mrad}$

Changeable Sheets (CS): pair of emulsion films acting as TT – brick interface

TT – brick connection
OPERA detector

Each brick is a stand-alone detector with sub-micrometric resolution.

• Momentum measurement by multiple Coulomb scattering
 • E.m. shower detection and energy measurement
 • Detection of highly-ionizing nuclear fragments produced in hadronic interactions (discrimination between interactions and decays)
Run 2012 in progress.
Foreseen integrated intensity at the end of the run: 18.9 x 10^{19} p.o.t.
(\sim 84\% of nominal intensity)

<table>
<thead>
<tr>
<th>Run</th>
<th>Protons on target</th>
<th>SPS efficiency</th>
<th>In-target events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1.78x10^{19}</td>
<td>61%</td>
<td>1698</td>
</tr>
<tr>
<td>2009</td>
<td>3.52x10^{19}</td>
<td>70%</td>
<td>3557</td>
</tr>
<tr>
<td>2010</td>
<td>4.04x10^{19}</td>
<td>81%</td>
<td>3912</td>
</tr>
<tr>
<td>2011</td>
<td>4.84x10^{19}</td>
<td>78%</td>
<td>4210</td>
</tr>
</tbody>
</table>

Located neutrino interactions 4611

Fully analysed events 4126

\nu_\tau candidate events 2

compatible with the expectations for the analysed sample
First ν_τ candidate

Decay vertex: τ^- \rightarrow $h\pi^0 \nu_\tau$

First direct detection of $\nu_\mu \rightarrow \nu_\tau$ oscillations in appearance mode

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>AVERAGE</th>
<th>Selection criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>kink (mrad)</td>
<td>41 ± 2</td>
<td>>20</td>
</tr>
<tr>
<td>decay length (μm)</td>
<td>1335 ± 35</td>
<td>within 2 lead plates</td>
</tr>
<tr>
<td>P daughter (GeV/c)</td>
<td>12^{+6}_{-3}</td>
<td>>2</td>
</tr>
<tr>
<td>PT (MeV/c)</td>
<td>470^{+230}_{-120}</td>
<td>>300 (\gamma attached)</td>
</tr>
<tr>
<td>missing PT (MeV/c)</td>
<td>570^{+320}_{-170}</td>
<td><1000</td>
</tr>
<tr>
<td>ϕ (deg)</td>
<td>173 ± 2</td>
<td>>90</td>
</tr>
</tbody>
</table>
$\nu_\mu \rightarrow \nu_\tau$ oscillation search

New ν_τ candidate

2-prong ν interaction with one track showing a secondary vertex compatible with the hypothesis of $\tau^- \rightarrow h^+ h^- h^- \nu_\tau$
$\nu_\mu \to \nu_\tau$ oscillation search

New ν_τ candidate

Event kinematics

<table>
<thead>
<tr>
<th>Cut</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi (Tau - Hadron) [degree]</td>
<td>$>$90</td>
<td>167.8 \pm 1.1</td>
</tr>
<tr>
<td>average kink angle [mrad]</td>
<td>< 500</td>
<td>87.4 \pm 1.5</td>
</tr>
<tr>
<td>Total momentum at 2ry vtx [GeV/c]</td>
<td>> 3.0</td>
<td>8.4 \pm 1.7</td>
</tr>
<tr>
<td>Min Invariant mass [GeV/c2]</td>
<td>$0.5 < < 2.0$</td>
<td>0.96 \pm 0.13</td>
</tr>
<tr>
<td>Invariant mass [GeV/c2]</td>
<td>$0.5 < < 2.0$</td>
<td>0.80 \pm 0.12</td>
</tr>
<tr>
<td>Transverse Momentum at 1ry vtx [GeV/c]</td>
<td>< 1.0</td>
<td>0.31 \pm 0.11</td>
</tr>
</tbody>
</table>

No muon detected at the primary vertex:

track other than τ lepton candidate
not compatible with muon hypothesis based on momentum - range correlation
\(\nu_\mu \rightarrow \nu_\tau \) oscillation search

New \(\nu_\tau \) candidate

Satisfying the specified criteria for \(\tau \rightarrow 3 \)hadron decay
$\nu_\mu \rightarrow \nu_\tau$ oscillation search: summary

<table>
<thead>
<tr>
<th>Run</th>
<th>Status</th>
<th>Number of analysed events</th>
<th>Expected ν_τ events (Preliminary)</th>
<th>Observed ν_τ candidate events</th>
<th>Expected BG (Preliminary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008 - 2009</td>
<td>Finished</td>
<td>2783</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2010 - 2011</td>
<td>Analysis in progress</td>
<td>1343</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Started</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4126</td>
<td>2.1</td>
<td>2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
\(\nu_\mu \rightarrow \nu_\tau \) oscillation search: control sample

Control sample for \(\nu_\tau \) detection efficiency:

charm production and decay (flight length and decay topologies similar to those of the \(\tau \) lepton)

Charmed hadron – muon angle in the plane transverse to \(\nu \) direction

Expected events: 51 ± 7.5
Observed events: 49
$\nu_\mu \rightarrow \nu_e$ oscillation search

Systematic search for electron neutrinos applied to 505 events without muon in the final state (runs 2008 – 2009)

Expected events: 19.2 (beam) + 1.5 (oscillated)
Observed events: 19

$E_\nu = 15.6$ GeV
\[\nu_\mu \rightarrow \nu_e \text{ oscillation search} \]

Systematic search for electron neutrinos applied to 505 events without muon in the final state (runs 2008 – 2009)

Expected events: 19.2 (beam) + 1.5 (oscillated)
Observed events: 19

\[E_\nu < 20 \text{ GeV} \text{ (improve S/N ratio)} \]

Expected events: 3.7 (beam) + 1.1 (oscillated)
Observed events: 4

\[\Delta m_{23}^2 = 2.45 \times 10^{-3} \]
\[\sin^2 \theta_{23} = 0.51 \]
Conclusions and Outlooks

- OPERA is successfully collecting data since 2008.

 We expect to reach 18.9×10^{19} integrated p.o.t. by the end of 2012 run, corresponding to $\sim 84\%$ of the nominal intensity.

- $\nu_\mu \rightarrow \nu_\tau$ oscillation search:
 - 2 ν_τ candidate events observed so far
 - (expected: 2 signal, 0.2 BG – preliminary -)
 - A few more events are under study.

- $\nu_\mu \rightarrow \nu_e$ oscillation search:
 - 19 ν_e events observed in 2008 – 2009 statistics,
 - 4 with $E_\nu < 20$ GeV (expected: 1.1 oscillated, 3.7 BG).
 - Statistics will be improved by a factor of ~ 3
 - \Rightarrow set constraints in the high Δm^2 region
Thank you!
Control sample: charm events

(ﬂight length and decay topologies similar to those of the τ)

<table>
<thead>
<tr>
<th>Topology</th>
<th>Observed events</th>
<th>Expected events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Charm</td>
</tr>
<tr>
<td>Charged 1-prong</td>
<td>13</td>
<td>15.9</td>
</tr>
<tr>
<td>Neutral 2-prong</td>
<td>18</td>
<td>15.7</td>
</tr>
<tr>
<td>Charged 3-prong</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>Neutral 4-prong</td>
<td>3</td>
<td>2.0</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>39.1±7.5</td>
</tr>
</tbody>
</table>

2738 located and fully analysed events

($\leftrightarrow 4.8 \times 10^{19}$ p.o.t.)

1 ν_τ candidate observed in the $\tau \rightarrow h$ channel

Expected: 0.49 ± 0.12 signal events,
0.05 ± 0.01 background events

Expected (all decay channels):
1.65±0.41 signal events,
0.16±0.03 background events
$\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation analysis 2008-2009

Hadronic interaction background

Hadronic tracks produced in ν interactions showing kink topology:

- 14 m of tracks scanned
- No events in the signal region
- 10 events in reference region

 ($P_t \ 200 \div 600 \ \text{MeV/c}$), 10.8 expected

90% C.L. upper limit of 1.0×10^{-3} kinks/NC event

4 GeV/c pion interactions in test beam bricks:

- 190 m of tracks scanned
- 534 interactions found
- 214 kinks detected
- No events in the signal region
Background reduction: black track search

Highly ionizing nuclear fragments produced in hadronic interactions

Background reduction: track follow-down

Tracks produced in potentially interesting \(\nu \) interactions are followed in downstream bricks to detect secondary interactions and/or apply momentum-range consistency checks:

- Misidentified muons from charm events: 5% \(\rightarrow \) 3.3%

- Factor 100 BG reduction in \(\tau \rightarrow \mu \) channel due to muon mismatch in CC and NC interactions
$\nu_\mu \rightarrow \nu_\tau$ oscillation search: study of hadronic interactions

Comparison between data and MC (Fluka)

Multiplicity

10GeV/c

4GeV/c

2GeV/c

Kink angle (1-prong)

Error bars: Experimental data
Histogram: Simulated data
• Event sample:
 – 505 NC-like events (runs 2008 and 2009)

• For each event:
 – Extrapulate 1ry tracks to CS
 – For each track, search for shower signal in CS
 – If shower-like tracks are found, measure additional volume around 1ry track.

• Results:
 – 96 events selected
 – 19 ν_e interactions confirmed

$\nu_\mu \rightarrow \nu_e$ oscillation search
$\nu_\mu \rightarrow \nu_e$ oscillation search

A close-up of an electron pair as seen in emulsion

Gamma-ray

1micron

Low-energy electrons produced in gamma conversion are difficult to recognise in emulsion \Rightarrow Background source

Estimated background in 2008-2009 sample: 0.16 events
Performance of the Electronic detectors

Muon identification efficiency ~ 95% (track length \times \text{density} > 660 \text{ g cm}^{-2})

Muon momentum reconstruction

Deposited energy in the TT – CC events

m.i.p. 5 photo-electrons (2.15 MeV)

New Journal of Physics 13 (2011) 053051
THE PRINCIPLE OF THE EXPERIMENT: ECC + ELECTRONIC DETECTORS

- Intense, high-energy muon-neutrino beam
- Massive active target with micrometric space resolution
- Detect tau-lepton production and decay
- Use electronic detectors to provide “time resolution” to the emulsions and preselect the interaction region