Near BPS Skyrmions: Non-shell configurations and Coulomb effects

L. Marleau

Département de physique, génie physique et d'optique Université Laval, Québec, Canada

ICHEP 2012, Melbourne, 4-11 July

1.1 The Skyrme Model 1.2 Multibaryons

The Skyrme Model : Motivations

- Skyrme Model = low-energy effective mesonic field theory of QCD
- Baryons and nuclei= topological solitons: conserved topological charge = baryon number
- Success: Hadron properties predicted within 30% (some quantities within a few %)
- Difficulties: Numerically challenging, Link to QCD, ...AND...
 Multibaryon physics (nuclear binding energy,

configurations),¹

¹[based on works in : Phys.Rev. D82 (2010) 054023, arXiv:1205.1414

The Problem : Multibaryons

- Binding energies too large especially for small nuclei (e.g. deuteron \simeq 80 \times observed value)
- Shell-like baryon and mass density configurations

1.1 The Skyrme Model 1.2 Multibaryons

Multibaryons : Alternatives:

- Different potential (mass) terms
- Rotational deformations
- More higher order terms in derivatives
- More mesons (e.g. $\omega, \rho, ...$)

 \implies Previous results: Similar configurations and binding energies

2.1 Near BPS Skyrme Model 2.2 Binding Energies per Nucleon (B/A)

New Model : Near BPS Skyrme Model

Basic idea:

Nuclei: $M \approx A \cdot M_{nucleon}$ and almost constant density

∜

Construct model where $\textbf{Skyrmions} \approx \textbf{BPS-solitons}$ with NON-shell density

・ 同 ト ・ ヨ ト ・ ヨ ト

2.1 Near BPS Skyrme Model 2.2 Binding Energies per Nucleon (B/A)

New Model : Near BPS Skyrme Model

• The pion fields described by matrix $U \in SU(2)$

$$U = \exp(-\frac{2i}{F_{\pi}}\vec{\tau}\cdot\vec{\pi}) = \phi_0 + i\vec{\tau}\cdot\vec{\phi}$$

such that
$$\phi_0^2 + \vec{\phi}^2 = 1$$

• Our model: Lagrangian

$$\mathcal{L}_{\text{NBPS}} = \underbrace{\mathcal{L}_2 + \mathcal{L}_4}_{\text{Skyrme}} + \underbrace{\mathcal{L}_0 + \mathcal{L}_6}_{\text{BPS-solitons}}$$

L. Marleau Near BPS Skyrmions: Non-shell configurations and Coulon

同 ト イ ヨ ト イ ヨ ト

LAVAL

New Model : Near BPS Skyrme Model

Quadratic NL
$$\sigma$$
 term: kinetic term (here $L_{\mu} = U^{\dagger} \partial_{\mu} U$)
$$\mathcal{L}_{2} = -\alpha \operatorname{Tr} [L_{\mu} L^{\mu}] \qquad (\alpha = \frac{F_{\pi}^{2}}{16})$$

 Quartic Skyrme term (necessary to stabilize soliton: Derrick Theorem)

$$\mathcal{L}_4 = \beta \operatorname{Tr}\left(\left[L_{\mu}, L_{\nu}\right]^2\right) \qquad \left(\beta = \frac{1}{32e^2}\right)$$

Solution Potential term (χ SB term): responsible for pion mass

$$\mathcal{L}_{0} = -\mu^{2}V(U)$$
 $(= rac{m_{\pi}^{2}F_{\pi}^{2}}{8} \mathrm{Tr}(1-U))$

New Model : Near BPS Skyrme Model

Sextic term: quadratic in time derivatives ⇒ standard hamiltonian formulation.

$$\mathcal{L}_{6} = -\frac{3}{2} \frac{\lambda^{2}}{16^{2}} \operatorname{Tr} \left(\left[L_{\mu}, L_{\nu} \right] \left[L^{\nu}, L^{\lambda} \right] \left[L_{\lambda}, L_{\mu} \right] \right) = \lambda^{2} \pi^{4} \mathcal{B}^{\mu} \mathcal{B}_{\mu}$$

where \mathcal{B}^{μ} is the baryon current

$$\mathcal{B}^{\mu} = rac{1}{24\pi^2} \epsilon^{\mu
u
ho\sigma} \mathsf{Tr}\left(L_{
u}L_{
ho}L_{\sigma}
ight)$$

• Winding number = baryon number = atomic number = A $A = \int d^3 r \mathcal{B}^0 = -\frac{1}{24\pi^2} \epsilon^{ijk} \int d^3 r \operatorname{Tr} (L_i L_j L_k).$

・ロト ・ 一 ト ・ 三 ト ・ 三 ト

LAVAL

Near BPS Skyrme Model : The Strategy

Get closer to saturation of Bogomol'nyi bound without losing link with pion physics:

$$\mathcal{L}_{\text{NBPS}} = \underbrace{\mathcal{L}_0 + \mathcal{L}_6}_{\text{BPS-solitons}} + \underbrace{\mathcal{L}_2 + \mathcal{L}_4}_{\text{Skyrme}}$$

• Assume $\mathcal{L}_0 + \mathcal{L}_6$ dominate (\implies BPS-solitons) and • Treat \mathcal{L}_2 and \mathcal{L}_4 are small as perturbations.

Then:

Near BPS Skyrme Model : The Strategy

Setting $\alpha = \beta = 0$, choose an appropriate potential V(U) for NON-shell configuration

$$-\mu^{2}V(U) = \frac{\mu^{2}}{576} \operatorname{Tr}\left[\frac{(2I-U-U^{\dagger})(2I+U+U^{\dagger})^{3}}{\ln((2I+U+U^{\dagger})/4)}\right]$$

Solution = BPS-soliton with axial symmetry

$$U = \cos F(r) + i\mathbf{\hat{n}} \cdot \tau \sin F(r)$$

 $\mathbf{\hat{n}} = (\sin\theta\cos n\varphi, \sin\theta\sin n\varphi, \cos\theta)$

with n = A = integer and **analytical** form

$$F(r) = \pm 2 |\arccos(\exp[-ar^2])|$$
 with $a = \left(\frac{\mu}{18n\lambda}\right)^{2/3}$

Near BPS Skyrme Model : The Strategy

Near BPS Skyrme Model : The Strategy

- Switch on the NL σ and Skyrme terms as small perturbations
- Add rotational and iso-rotational energies E_{rot}: well-known procedure

$$E_{\rm rot} = \frac{1}{2} \left[\frac{j(j+1)}{V_{11}} + \frac{i(i+1)}{U_{11}} + \left(\frac{1}{U_{33}} - \frac{1}{U_{11}} - \frac{n^2}{V_{11}} \right) \kappa^2 \right]$$

 $i, j, \kappa = lab.$ isospin, spin, max. of B.F. 3rd comp. of isospin. $U_{ii}, W_{ii}, V_{ii} = moments$ of inertia.

Near BPS Skyrme Model : The Strategy

Solution Add Coulomb energy E_C using charge density

$$\rho(\mathbf{r}) = J_{EM}^0 \equiv \frac{1}{2}\mathcal{B}^0(\mathbf{r}) + i_3 \frac{\mathcal{U}_{33}(\mathbf{r})}{\mathcal{U}_{33}}$$

where $\mathcal{B}^0(r)$ and $\mathcal{U}_{33}(\mathbf{r})$ have an analytical form

• Add isospin breaking term E_I (p-n mass difference):

$$E_I = a_I i_3$$

Fit 4 parameters of the model μ, α, β, λ w.r.t. nuclear data and mass of the multiskyrmions:

$$M = E_{\rm stat} + E_{\rm rot} + E_C + E_I$$

and compute other properties of the nuclei.

Near BPS Skyrme Model : The Strategy

Set I: $\alpha = \beta = 0$, input = H and He masses Set II: input = masses of 144 most stable isotopes Set III: input = B/A of 144 most stable isotopes

	Set I	Set II	Set III
μ (10 ⁴ MeV ²)	1.49	1.51	1.73
α (10 ⁻³ MeV ²)	0	5.88	22.1
β (10 ⁻⁶ MeV ⁰)	0	-1.85	-5.81
λ (10 ⁻³ MeV ⁻¹)	6.41	6.34	5.54

(日本) (日本) (日本)

LAVAL

1. The Problem 2. New Model 3. Conclusions

2.1 Near BPS Skyrme Model 2.2 Binding Energies per Nucleon (B/A)

Binding Energies per Nucleon (B/A) : Set I, II and III

3.1 Summary and Outlook

Conclusions : Summary and Outlook

Near-BPS Skyrme Model

- Non shell-like configurations for baryon and charge densities for all *A* possible
- Surprisingly good fit for B/A
- \bullet Other important results: e.g. size of nuclei \propto ${\cal A}^{1/3}$

Next:

- $\bullet~$ Improve choice of potential \Longrightarrow Constant charge density with constant skin thickness for nuclei
- Study more properties: magnetic moments, form factors, vibrational modes,...
- etc...

1. The Problem 2. New Model

3.1 Summary and Outlook

Conclusions : Summary and Outlook

Questions

- ∢ ⊒ →