

Richard Hawkings (CERN)

on behalf of the ATLAS collaboration

36th International Conference on High Energy Physics – Melbourne, Australia

The ATLAS Collaboration

9th July 2012

All good for physics: 93.6%

Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at vs=8 TeV between April 4th and June 18th (in %) – corresponding to 6.3 fb⁻¹ of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.

The ATLAS trigger in 2012 data

- Menu optimised for 7 × 10³³ cm⁻²s⁻¹ at 8 TeV
 - ~65 kHZ L1, average 400 Hz EF output rate
 - Enable lower-priority triggers in long fills
- Some 'staple' menu items at 7 × 10³³ cm⁻²s⁻¹

Offline (GeV)	L1 thr (GeV)	L1 rate (kHz)	EF thr (GeV)	EF rate (Hz) @ 5 10 ³³
e > 25	18	17	24	70
µ > 25	15	8	24	45
dilepton	10-15	15	8-18	21
2γ 25-40	10-16	12	20-35	17
2т 30-45	11-15	12	20-29	12
Jet > 360	75	2	2	5
MET 120	40	2	80	17

 Additional b-physics and hadronic triggers to 'delayed' streams for later processing

ATLAS offline computing

- Prompt data reconstruction at Tier-0 has kept up with LHC performance in last weeks
 - Extra resources used up to 7.5k CPU cores
 - 15-40 seconds/event for RAW→ESD step

- World-wide Grid computing is essential
 - Up to 150k simultaneous jobs running in parallel
 - Mainly MC simulation and user analysis jobs
 - Computing centres give resources beyond pledged commitments
 - Very beneficial for the broad physics program

Maximum: 161,081 , Minimum: 114,090 , Average: 137,149 , Current: 151,540

Physics analysis and publications

- 166 papers on collision data
 - Average of ~2 papers/week this year
- 363 CONF notes with preliminary results
 - 35 new CONF notes for this conference

- ATLAS results available at <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>
- No time to review all the new ATLAS physics results for this conference
 - See ATLAS parallel session talks, and other plenary talks:

Subject	Speaker	Subject	Speaker
Top physics	Thomas Müller	Jets/QCD	Dmitry Bandurin
Electroweak	Joao Guimaraes	Soft QCD	Paul Newman
SUSY	Andy Parker	Heavy flavour	Sheldon Stone
BSM searches	Steve Worm	Heavy ions	Johanna Stachel

Foundations for searches - measurements of W, Z, diboson and top prodⁿ:

7

- SM Higgs phenomenology precisely predicted, apart from mass m_H
 - Production dominated by gg fusion; then VBF $qq \rightarrow qqH$, associated WH and ZH
 - Decay modes vary with m_H as $H \rightarrow WW(*)$ and then $H \rightarrow ZZ(*)$ open up

 2011 combination (arXiv 1207.0319) takes all info (signal/control regions) from all modes, fits to the SM Higgs signal model (prodⁿ/decay modes) as function of m_H

Scale the overall production rate coherently by a 'signal-strength' parameter µ
 9th July 2012

Exclusion with the 2011 data

- m_н [GeV] Expected exclusion of μ =1 in absence of signal is **120-560** GeV
- **114.4-116.6**, **119.4-122.1** and **129.2-541** GeV are excluded at 95% CL
 - And 130.7-506 GeV excluded at 99% CL

9th July 2012

Compatibility with background-only hypothesis quantified with local p_0

9th July 2012

Richard Hawkings

10

- Associated prodⁿ of WH probes different production mechanism (few % of gg)
 - High sensitivity to HWW coupling, especially in $H \rightarrow WW$ decay sub-channel
- Search for WH \rightarrow WWW \rightarrow IvIvIv 3 leptons and missing-E_T in final state
 - Select signal based on 3 isolated leptons, at most one jet (without b-tag)
 - Split into 'Z-enriched' (one lepton pair charges/flavours consistent with Z, veto on Zmass), and 'Z-depleted' samples
 - Final selection using missing-ET and ΔR between oppositely charged leptons ($\Delta R < 0.2$)
 - Veto events selected by standard H→WW→lvlv analysis
- No excess seen, limit set between 2.7 (at m_H=165 GeV) and 43x SM expectation

Non-SM $H \rightarrow 4\gamma$

^کہ 0.07

0.06

0.05

0.04

0.03

0.02

0.01

20

30

Typical EM

cluster size

40

50

60

γγ opening angle in η (m, = 125 GeV)

ATLAS Preliminary

Opening angle in n

70

80

E_T(a) [GeV]

--- m_=100 MeV

- ma=200 MeV

---- m_=400 MeV

Simulation

- Interest in other models with similar signature
 - Decay of Higgs to light CP-odd pseudoscalars $H \rightarrow a_0 a_0$ $\gamma A^0 h^0 A^0 \gamma$
 - a₀ decays to two very collimated photons with small separation, mimics H→γγ with slightly degraded reslⁿ
 - Relax photon identification for broader (merged) shower
 - Applicable for a₀ decays <~0.5m, 100<m(a₀)<400 MeV</p>
 - No signal observed, set limits on $\sigma \times BR(H \rightarrow 4\gamma)$

MSSM neutral Higgs searches

- 3 neutral Higgs bosons Φ in MSSM: h, H and A
 - Production via gluon fusion and b-quark annihilation
 - Cross-sections rise with tanβ, b-assoc. becomes dominant
 - Decay into b-bbar (90%), ττ (10%), μμ (0.04%)
- Search in both b-tagged and b-vetoed samples
 - μμ: clean signature, good mass resolution, but low rates
 - TT: Similar to SM $H \rightarrow TT$ but with b-tagged/vetoed sel
 - Set limits in $(m_A, tan\beta)$ plane and generically on σ .BR

Strategy for 2012 SM Higgs analysis

95% (

- Most sensitive channels at m_{H} =126 GeV are $H \rightarrow WW \rightarrow IvIv$, $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ(*) \rightarrow 4I$
 - Latter two have good mass resolution, and rely on photons, electrons and muons
 - Easier objects in a high pileup environment
- First priority on these two channels
 - Reoptimise analyses for high pileup and low m_H based on MC and 2011 control regions
 - All selections and analysis techniques fixed before looking at 2012 data
- WW is more difficult expect broad excess in transverse mass distribution
 - Requires excellent understanding of (b)-jets, missing- E_{T} in high pileup environment
 - Understand everything thoroughly in control regions before 'unblinding'
 - Plan to have results for end-July paper

9th July 2012

15

- Select diphoton events, look for a narrow peak in the m_{vv} distribution
 - Fit background using data, in categories with different S/B ratio and m_{vv}-resolution
- Comprehensive analysis reoptimisation
 - Optimised kinematic requirements
 - Neural-net based photon ID for 2011 data
 - Reopt. photon ID for 2012, stable with high pileup
 - Improved 'topological' calorimeter isolation
 - New '2-jets' category for enhanced VBF sensitivity

Selection	2011 old	2011 new	2012
Trigger $p_T(\gamma)$	2γ20	2γ20	γ35γ25
Offline $p_T(\gamma)$	40, 25 GeV	40, 30 GeV	40, 30 GeV
Photon ID	Cuts	Neural net	Reopt. cuts
Isolation (ΔR=0.4)	Cell-based < 5 GeV	Topo. <4 GeV	Topo, <4 GeV
Categories	9	10	10

9th July 2012

Event display: yy candidate, 2012 data

- Separation of γ and π^0 in LAr calorimeter
 - Photon 'pointing' to locate primary vertex

- Composition of γγ sample:
 - 75-80% QCD γγ production
 - 20-25% γ-jet or jet-jet, jet mis-ID e.g. due to hard π⁰

9th July 2012

- Reconstruct angles and energies of photons
 - Calorimeter 'pointing' (longitudinal segmentation) & conversion vertex (if available) give σ_{zvtx} ~15mm
 - Sufficient for good m_{yy} resolution
 - 2-jet category requires correct primary vertex ID to associate jets from hard scattering
 - Likelihood combines standard Σp_T² method with photon pointing and conversion information
- Photon energies calibrated using Z→ee
 - Small MC-based corrections for both converted and unconverted photons
 - Expected H→γγ signal shape modelled by Crystal Ball+Gaussian function
 - FWHM varies from 3-6 GeV depending on event category (converted/unconverted, η, p_T)

$H \rightarrow \gamma \gamma$: Analysis categories

8 TeV sample

- Categorize events by S/B based on
 - Both photons unconverted or ≥1 converted ca
 - Both photons central (|η|<0.75), one in transition region, or rest
 - Diphoton p_{Tt}< or > 60 GeV
 - Diphoton transverse momentum wrt thrust

- New 2-jet category (sensitive to VBF)
 - Two $p_T > 25-30$ GeV jets, $\Delta \eta_{ij} > 2.8$, $m_{ij} > 400$ GeV
 - Dijet and diphoton back-to-back: ΔΦ>2.6 Bichard Hawkings

Category	σ_{CB}	FWHM	Observed	S	B
	[GeV]	[GeV]	$[N_{\rm evt}]$	$[N_{\rm evt}]$	[Nevt]
Inclusive	1.63	3.87	3693	100.4	3635
Unconverted central, low p_{Tt}	1.45	3.42	235	13.0	215
Unconverted central, high p_{Tt}	1.37	3.23	15	2.3	14
Unconverted rest, low p_{Tt}	1.57	3.72	1131	28.3	1133
Unconverted rest, high p_{Tt}	1.51	3.55	75	4.8	68
Converted central, low p_{Tt}	1.67	3.94	208	8.2	193
Converted central, high p_{Tt}	1.50	3.54	13	1.5	10
Converted rest, low p_{Tt}	1.93	4.54	1350	24.6	1346
Converted rest, high p_{Tt}	1.68	3.96	69	4.1	72
Converted transition	2.65	6.24	880	11.7	845
2-jets	1.57	3.70	18	2.6	12

$H \rightarrow \gamma \gamma$ analysis: fitting the background

- Fit function: potential shape bias vs statistics
 - Explored with high-stat MC before looking at data, modeling γγ, γ-jet and jet-jet backgrounds
 - Considered n-order Bernstein polynomial, exp(P2) or exponential
 - Chose based on small potential bias for 125 GeV
 - Largest residual bias seen in b/g MC experiments over 110-150 GeV taken as signal yield systematic

Calasson	Decemental and the second	The control of a TRY 1	
Category	Parametrization	Uncertainty	[N _{evt}]
		$\sqrt{s} = 7 \text{ TeV} \sqrt{s}$	s = 8 TeV
Inclusive	4th order pol.	7.3	10.6
Unconverted central, low p_{Tt}	Exp. of 2nd order pol.	2.1	3.0
Unconverted central, high p_{Tt}	Exponential	0.2	0.3
Unconverted rest, low p_{Tt}	4th order pol.	2.2	3.3
Unconverted rest, high p_{Tt}	Exponential	0.5	0.8
Converted central, low p_{Tt}	Exp. of 2nd order pol.	1.6	2.3
Converted central, high p_{Tt}	Exponential	0.3	0.4
Converted rest, low p_{Tt}	4th order pol.	4.6	6.8
Converted rest, high p_{Tt}	Exponential	0.5	0.7
Converted transition	Exp. of 2nd order pol.	3.2	4.6
2-jets	Exponential	0.4	0.6
9th July 2012		Richard Hawkin	as

Invariant mass distribution combining 2012 (35271 events) and 2011 (23788)

- Simple unweighted sum of events passing γγ selection and kinematic cuts, before categorization
 - Fit to signal model at 126.5 GeV+4th order Bernstein b/g mode
- Full results obtained by splitting data into 10 categories and fitting mass distributions separately ...

$H \rightarrow \gamma \gamma$ analysis: 10-category results

Expected exclusion from 110-139.5 GeV

- Observed exclusion from 112-122.5 GeV and 132-143 GeV
- Most significant deviation from background hypothesis at m_{H} =126.5 GeV
 - Local signif. 4.7 σ , reduced to 4.5 σ accounting for 0.6% systematic on γ energy scale
 - For a SM Higgs at mH=126.5 GeV, expected significance would be 2.4σ

Similar-sized excesses in both 2011 (3.5 σ) and 2012 (3.4 σ), compatible masses 9th July 2012 **Richard Hawkings** 21

$H{\rightarrow}\gamma\gamma$: Signal strength and categories

 Fitted signal strength µ=1.9±0.5 at m_H=126.5 GeV

- Breakdown of results by fit categories
 - Most sensitive categories indicated
 - No particular surprises

Signal strength

Effect of simple fit to inclusive sample instead of 10 analysis categories

Local significance of excess is 3.5σ (inclusive) rather than 4.7σ (10-category)

 Intermediate effect of dropping separate two-jet category also shown – 9 category analysis as initially used for 2011 data

9th July 2012

- Electron reconstruction efficiency [%] Reoptimise for low m_H using MC / 2011 data control regions, before looking at 2012 data
 - Improved electron reconstruction in 2012
 - Allowing for bremsstrahlung in pat-rec
 - Electron tracks fitted with GSF (both years)
 - Improved e-ID selection stable against pileup
 - Standalone muons in 2.5<|n|<2.7
 - Additional calo-tagged muons for $|\eta| < 0.1$
- Revised kinematic selection:

Selection	Original			Optimised			
Lepton p_T (e/µ)	20,20,7,7			20,15,10,7/6			
m ₁₂ selection	m ₁₂ -m _Z <15			50 <m<sub>12<106</m<sub>			
m ₃₄ selection	m _{min} <m<sub>34<115</m<sub>		m _{min} <m<sub>34<115</m<sub>				
		100					
$m_{4\ell}$ (GeV)	≤120	130	150	160	165	180	≥190
m ₃₄ threshold (GeV)	17.5	22.5	30	30	35	40	50

9th July 2012

Richard Hawkings

60^L

Number of reconstructed primary vertices

20

- Reconstruct 4-lepton invariant mass and look for a peak
 - Constrain leading lepton pair to m_Z for m_{4I}<190 GeV, both pairs otherwise
- Mass resolution in simulated events at m_H=130 GeV

$H \rightarrow 4I$: Background estimates I

stua 140

120

100

- Background dominated by continuum ZZ(*)→4I
 - Zbb, Zqq and t-tbar also important at low m_H
 - Isolation / impact parameter (IP) cuts reduce but do not eliminate background from non-prompt leptons
 - More significant when low-mass pair is ee (4e, 2µ2e)
- Continuum background taken from simulation
- In 4µ and 2e2µ, use bb-enriched control region
 - Remove low-m pair isolation, require significant IP
 - Fit normⁿ of Zbb and tt, extrapolate to signal region
- In 4e and 2µ2e larger contribution from γ-conversions / hadronic fakes
 - Relax selection, fit components using b-layer, TRT high-threshold and calorimeter-shape variables
 - Fit normalisation and extrapolate
 - Cross-check with fit to relaxed 'same-sign' selection on 4th lepton
 9th July 2012
 Richard Hawkings

- Cross-check background estimates by applying isolation to first lepton pair only
 - Agreement at high mass (ZZ(*)) and low mass (Zbb, Zqq, ttbar)

$H \rightarrow 4$ leptons: Selection results

$H \rightarrow 4$ leptons: Low mass candidates

29

Event Display: 4µ

Event display: 2e2µ

H→4 leptons: Exclusions

- SM Higgs is excluded at 95% from 131-162 GeV and 170-460 GeV
- Region around 126 GeV cannot be excluded

9th July 2012

$H \rightarrow 4$ -leptons: Compatibility with background

- Most significant deviation from background-only hypothesis at m_H=125 GeV
 - Local p_0 value 0.029% or 3.4 σ , globally 2.1 σ with LEE in range 110-600 GeV
 - Both 2011 and 2012 data contribute to excess in same mass range
 - Signal strength µ compatible with 1 around this mass

9th July 2012

Combining updated 2011+2012 γγ and 4-lepton analysis with others as before

- Expected exclusion with this dataset from 110-582 GeV
 - Observed exclusion from 110-122.6 GeV and 129.7-558 GeV
 - 111.7-121.8 GeV and 130.7-523 GeV excluded at 99% CL
 - Region around 126 GeV cannot be excluded

9th July 2012

Combined search: Compatibility with background

Smallest p₀ value corresponds to local significance of 5.1σ at m_H=126.5 GeV

- Expected value if SM Higgs of mass 126.5 GeV exists is 4.6σ
- Significance mildly sensitive to energy scale and resolution systematics (ESS)
 - Important for photons and electrons, negligible for muons
 - ESS estimated to reduce local significance to 5.0σ

Combined search: Significance of signal

- Alternative view in terms of signal significance
 - Local p_0 is within $\pm 2\sigma$ of background-only everywhere except close to ~126 GeV
- Look-elsewhere effect correction depends on mass range considered
 - Global p_0 of 4.1 σ in 110-600 GeV, 4.3 σ in 110-150 GeV (H $\rightarrow\gamma\gamma$ search range)
- 2012 data alone (γγ+4-lepton) local p₀ of 4.0σ at 127 GeV

Global significance 3.1σ in 110-130.7 GeV, range not excluded at 99% CL in 20119th July 2012Richard Hawkings36

Investigating the excess

Contributions of the different channels

- Contributions of different channels at 126.5 GeV
- Most important contributions from $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ(*) \rightarrow 4I$, $H \rightarrow WW(*) \rightarrow IvIv$ 9th July 2012

Developments over time

- A very interesting and busy time for the ATLAS collaboration
 - 2012 data-taking going very well high efficiency, good data quality
 - Many thanks to the LHC and other CERN teams for the fantastic machine performance
 - Hope for 15-20 fb⁻¹ at 8 TeV for the full 2012 data-sample, to add to 5 fb⁻¹ from 2011
 - Many new precision measurements and new physics searches on 2010-2011 data
 - Unfortunately no hints of new BSM physics yet, but ...
- Observation of a significant excess of events in the search for the SM Higgs
 - Excess around m_H =126.5 GeV in $\gamma\gamma$ (4.5 σ local sig.) and 4-leptons (3.4 σ)
 - Excesses are compatible with each other and with SM Higgs boson production
 - Combined search sees excess with local significance of 5.0σ at m_H=126.5 GeV
 - Evidence for a new, narrow resonance at a mass near 126.5 GeV
- A very exciting time lies ahead ...
 - Look forward to adding more channels and more data in the next months to learn more about what we are seeing

Expected signal contributions from different H production modes

\sqrt{s}	Category	Events	$gg \rightarrow H [\%]$	VBF [%]	WH [%]	ZH [%]	ttH [%]
7 TeV	Inclusive	79.3	87.8	7.3	2.9	1.6	0.4
	Unconverted central, low p_{Tt}	10.4	92.9	4.0	1.8	1.0	0.2
	Unconverted central, high p_{Tt}	1.5	66.5	15.7	9.9	5.7	2.4
	Unconverted rest, low p_{Tt}	21.6	92.8	3.9	2	1.1	0.2
	Unconverted rest, high p_{Tt}	2.7	65.4	16.1	10.8	6.1	1.8
	Converted central, low p_{Tt}	6.7	92.8	4.0	1.9	1.0	0.2
	Converted central, high $p_{\rm Tt}$	1.0	66.6	15.3	10	5.7	2.5
	Converted rest, low $p_{\rm Tt}$	21.0	92.8	3.8	2.0	1.1	0.2
	Converted rest, high p_{Tt}	2.7	65.3	16.0	11.0	5.9	1.8
	Converted transition	9.5	89.4	5.2	3.3	1.7	0.3
	2-jets	2.2	22.5	76.7	0.4	0.2	0.1
8 TeV	Inclusive	111.6	88.5	7.4	2.7	1.6	0.5
	Unconverted central, low p_{Tt}	14.4	92.9	4.2	1.7	1.0	0.2
	Unconverted central, high p_{Tt}	2.5	72.5	14.1	6.9	4.2	2.3
	Unconverted rest, low p_{Tt}	31.4	92.5	4.1	2.0	1.1	0.2
	Unconverted rest, high p_{Tt}	5.3	72.1	13.8	7.8	4.6	1.7
	Converted central, low p_{Tt}	9.1	92.8	4.3	1.7	1.0	0.3
	Converted central, high $p_{\rm Tt}$	1.6	72.7	13.7	7.1	4.1	2.3
	Converted rest, low $p_{\rm Tt}$	27.3	92.5	4,2	2.0	1.1	0.2
	Converted rest, high p_{Tt}	4.6	70.8	14.4	8.3	4.7	1.7
	Converted transition	13.0	88.8	6.0	3.1	1.8	0.4
	2-jets	2.9	30.4	68.4	0.4	0.2	0.2

Signal yield systematics

Systematic uncertainties	$\sqrt{s} = 7 \text{ TeV} [\%]$	$\sqrt{s} = 8 \text{ TeV} [\%]$	
Signal event yield			
Photon identification	±8.4	±10.8	
Effect of pileup on photon rec/ID	±4	4	
Photon energy scale	±0	.3	
Photon Isolation	±0.4	±0.5	
Trigger	±	1	
Higgs boson cross section (perturbative)	$gg \rightarrow H$: $^{+12}_{-8}$, VBF: ±0.3,	$gg \rightarrow H$: $^{+7}_{-8}$, VBF: ±0.2,	
	WH: $^{+0.2}_{-0.8}$, ZH: $^{+1.4}_{-1.6}$, ttH: $^{+3}_{-9}$	WH: $^{+0.2}_{-0.6}$, ZH: $^{+1.6}_{-1.5}$, ttH: $^{+4}_{-9}$	
	$gg \rightarrow H + 2$	2 jets: ±25	
Higgs boson cross section (PDF+ α_S)	$gg \rightarrow H$: $^{+8}_{-7}$, VBF: $^{+2.5}_{-2.1}$,	$gg \rightarrow H$: $^{+8}_{-7}$, VBF: $^{+2.6}_{-2.8}$,	
	VH: ±3.5, ttH: ±9	VH: ±3.5, ttH: ±8	
Higgs boson branching ratio	±5		
Higgs boson $p_{\rm T}$ modeling	low p_{Tt} : ±1.1, high p_{Tt} : =12.5, 2-jets: =9		
Underlying Event (2-jets)	VBF: ± 6 , Others: ± 30		
Luminosity	±1.8	±3.6	

Migration and resolution systematics

Signal category migration					
Material	Unconv: ±4	, Conv: ∓3.5			
Effect of pileup on photon rec/ID	Unconv: ± 3 , Conv: ∓ 2 ,	Unconv: ± 2 , Conv: ∓ 2 ,			
	2-jets: ±2	2-jets: ±12			
Jet energy scale	low p_{Tt}				
	$gg \rightarrow H$: ±0.1, VBF: ±2.6,	$gg \rightarrow H: \pm 0.1$, VBF: ± 2.3 ,			
	Others: ± 0.1	Others: ± 0.1			
	high	p_{Tt}			
	$gg \rightarrow H: \pm 0.1, \text{VBF}: \pm 4,$	$gg \rightarrow H: \pm 0.1$, VBF: ± 4 ,			
	Others: ± 0.1	Others: ± 0.1			
	2-jets				
	$gg \rightarrow H: \pm 19$, VBF: ± 8 ,	$gg \rightarrow H: \pm 18$, VBF: ± 9 ,			
	Others: ∓ 15	Others: ∓13			
Jet-vertex-fraction		2-jets: ±13, Others: ∓0.3			
Primary vertex selection	negligible				
Signal mass resolution					
Calorimeter energy resolution	±	12			
Electron to photon extrapolation	± 6				
Effect of pileup on energy resolution	±4				
Primary vertex selection	negligible				
Signal mass position					
Photon energy scale	±(0.6			
9th July 2012	Richard Hawkings				

- Background dominated by irreducible QCD diphoton production
 - Subleading contribution from events with 1 or 2 jets (with e.g. hard π^0) mis-ID as γ
 - Composition measured by relaxing photon-ID and/or isolation criteria, as fn of m_{yy}
 - Small contribution from DY Z/ $\gamma^* \rightarrow ee$, with mis-ID e, concentrated at low mass

shape fitted directly from data

$H \rightarrow \gamma \gamma$: Event weighting

- Weights defined as $w_i = \sigma^2 / \sigma_i^2$, σ_i is expected stat. uncertainty on category i
 - Weighted significance $Z'_i = \sqrt{w_i Z_i}$, where Zi is significance of category i
- Comparison of local significances vs m_H for 10-categories and inclusive
 - In 10-category fit, deficit at ~120 GeV has a local significance of 2.6 σ
 - Or global 1.2σ with LEE

9th July 2012

$H \rightarrow \gamma \gamma$: Comparison of old/new 2011 analyses

- Current 2011 analysis: 3.5σ at 126 GeV
- Original 2011 analysis: 2.8σ at 126.5 GeV (with ESS)

9th July 2012

- See 20-30% more events at high mass than predicted by MC
 - Also seen ZZ cross-section analysis: ~25% high, but consistent with prediction
- Allow ZZ(*) normalisation to float no significant change in p₀ for 125 GeV

H→4 leptons: Background modelling

- Validation of of Z+jets/ttbar background shape in control sample
 - Sub-leading dileptons fail isolation or impact parameter cuts
- Modelling of single resonant $Z \rightarrow 4I$ peak, relaxing m_{12} , m_{34} and p_T cuts

9th July 2012

Summary of estimates for non-resonant b/g, + = primary e					
	8 TeV	7 TeV			
Method	Estimate	Estimate			
4μ					
m_{12} fit: Z + jets contribution	0.51± 0.13 ±0.16 [†]	$0.25 \pm 0.10 \pm 0.08^{\dagger}$			
m_{12} fit: $t\bar{t}$ contribution	$0.044 \pm 0.015 \pm 0.015^{\dagger}$	0.022±0.010±0.011 [†]			
$t\bar{t}$ from $e^{\pm}\mu^{\mp} + \mu^{\pm}\mu^{\mp}$	$0.058 \pm 0.015 \pm 0.019$	$0.025 \pm 0.009 \pm 0.014$			
2e2µ					
m_{12} fit: Z + jets contribution	$0.41 \pm 0.10 \pm 0.13^{\dagger}$	$0.20 \pm 0.08 \pm 0.06^{\dagger}$			
m_{12} fit: $t\bar{t}$ contribution	$0.040 \pm 0.013 \pm 0.013^{\dagger}$	$0.020 \pm 0.009 \pm 0.011^{\dagger}$			
$t\bar{t}$ from $e^{\pm}\mu^{\mp} + \mu^{\pm}\mu^{\mp}$	$0.051 \pm 0.013 \pm 0.017$	$0.024 \pm 0.009 \pm 0.014$			
2µ2e					
$\ell\ell + e^{\pm}e^{\mp}$	$4.9\pm 0.8 \pm 0.7^{\dagger}$	$2.6\pm 0.4 \pm 0.4^{\dagger}$			
$\ell\ell + e^{\pm}e^{\pm}$	$4.1\pm 0.6 \pm 0.8$	$3.7\pm 0.9 \pm 0.6$			
$3\ell + \ell$ (same-sign)	$3.5\pm 0.5 \pm 0.5$	$2.0\pm 0.5 \pm 0.3$			
4 <i>e</i>					
$\ell\ell + e^{\pm}e^{\mp}$	$3.9\pm 0.7 \pm 0.8^{\dagger}$	$3.1\pm 0.6 \pm 0.5^{\dagger}$			
$\ell\ell + e^{\pm}e^{\pm}$	$3.1\pm 0.5 \pm 0.6$	$3.2\pm 0.6 \pm 0.5$			
$3\ell + \ell$ (same-sign)	$3.0\pm 0.4 \pm 0.4$	$2.2\pm 0.5 \pm 0.3$			

Comparison of data with MC with injected SM m_H=125 GeV signal

Combination: Different channels, different m_H

Signal strength (µ)

Contributions of different channels at 119, 126.5 and 130 GeV

• Most important contributions from $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ(*) \rightarrow 4I$, $H \rightarrow WW(*) \rightarrow IvIv$ 9th July 2012 Richard Hawkings

Combination of all channels, 2011+2012 data

Combination of all channels, 2011+2012 data

54

Dealing with high pileup

