Implications of 125 GeV Higgs in Composite Models

Michele Redi

with Stefania de Curtis and Andrea Tesi 1110.1613 + 1205.0232

ICHEP, 7 July

OUTLINE

• Minimal Effective description of Goldstone boson Higgs

Higgs and fermion masses in Composite Higgs

Michele Redi, ICHEP 2012, Melbourne

Saturday, July 7, 2012

COMPOSITE HIGGS

Georgi, Kaplan '80s

Higgs doublet could be a light remnant of strong dynamics.

COMPOSITE HIGGS

Georgi, Kaplan '80s

Higgs doublet could be a light remnant of strong dynamics.

Particularly compelling if Higgs is a Goldstone Boson. Massless at leading order.

Ex:
$$\frac{SO(5)}{SU(2)_L \otimes SU(2)_R} \longrightarrow GB = (2,2)$$

Agashe , Contino, Pomarol, '04

$$\mathcal{L} = f^2 D_{\mu} \Sigma^i D^{\mu} \Sigma^i + \dots$$

Relieves hierarchy problem:

$$\sim \frac{1}{m_{
ho}} = \frac{1}{\text{TeV}}$$

 $m_{\rho} = g_{\rho} f$

 $1 < g_{\rho} < 4\pi$

 $\delta m_h^2 \sim N_c \frac{y_t^2}{8\pi^2} m_\rho^2$

Increasing f CH approximates SM.

DEVIATIONS $\sim \frac{v^2}{f^2}$

Reasonable phenomenology can be obtained for $m_{\rho} \sim 3 \,\mathrm{TeV}$

Possible to realize it in Randall-Sundrum scenarios.

Through AdS/CFT correspondence dual to 4D CFTs. Relevant physics dominated by the lowest modes.

MINIMAL 4D COMPOSITE HIGGS

- One resonance for each SM field

Related work: Contino, Kramer, Son, Sundrum '06 Panico, Wulzer '11

General picture:

Strong sector: Higgs + (top) m_{ρ} g_{ρ} Elementary: SM Fermions + Gauge Fields

Michele Redi, ICHEP 2012, Melbourne

Saturday, July 7, 2012

General picture:

Strong sector: Higgs + (top) m_{ρ} g_{ρ}

Elementary: SM Fermions + Gauge Fields

They talk through linear couplings:

$$\mathcal{L}_{gauge} = g \, A_{\mu} J^{\mu}$$

 $\mathcal{L}_{mixing} = \lambda_L \bar{f}_L O_R + \lambda_R \bar{f}_R O_R$

 $y_{SM} = \epsilon_L \cdot Y \cdot \epsilon_R$

Higgs potential generated at 1-loop:

$$V(h) \sim \frac{N_c}{16\pi^2} \epsilon_{L,R}^2 m_\rho^4 \hat{V}\left(\frac{h}{f}\right) + \dots$$

 $\epsilon \sim \frac{\lambda}{Y}$

•
$$SO(5)/SO(4)$$

Composite spin-I lagrangian:

$$\frac{f_1^2}{4} \text{Tr} \left| D_{\mu} \Omega \right|^2 + \frac{f_2^2}{2} \left(D_{\mu} \Phi \right)^T \left(D^{\mu} \Phi \right) - \frac{1}{4g_o^2} \rho_{\mu\nu}^a \rho^{a\mu\nu}$$

$\Omega = \frac{SO(5)_L \times SO(5)_R}{SO(5)_R}$	$_{\mathbf{\Phi}}$ $SO(5)$
$SO(5)_{L+R}$	$\Psi = \frac{1}{SO(4)}$

 $D_{\mu}\Omega = \partial_{\mu}\Omega - iA_{\mu}\Omega + i\Omega\rho_{\mu} \qquad \qquad D_{\mu}\Phi = \partial_{\mu}\Phi - i\rho_{\mu}\Phi$

SO(4) and SO(5)/SO(4) spin-1 resonances.

Each SM fermion couples to Dirac fermion in a rep of SO(5).

CHM5:

Third generation:

$$\mathcal{L}^{\text{CHM}_{5}} = \mathcal{L}^{el}_{fermions} + \Delta_{t_{L}} \bar{q}^{el}_{L} \Omega_{1} \Psi_{T} + \Delta_{t_{R}} \bar{t}^{el}_{R} \Omega_{1} \Psi_{\widetilde{T}} + h.c.$$

$$+ \bar{\Psi}_{T} (i \not D^{\rho} - m_{T}) \Psi_{T} + \bar{\Psi}_{\widetilde{T}} (i \not D^{\rho} - m_{\widetilde{T}}) \Psi_{\widetilde{T}}$$

$$- Y_{T} \bar{\Psi}_{T,L} \Phi^{T}_{2} \Phi_{2} \Psi_{\widetilde{T},R} - m_{Y_{T}} \bar{\Psi}_{T,L} \Psi_{\widetilde{T},R} + h.c.$$

$$+ (T \rightarrow B)$$

$$\text{Explicit SO(5) breaking}$$

$$\text{SO(5)/SO(4)}$$

Coleman-Weinberg effective potential:

$$V(h)_{fermions} = -2N_c \int \frac{d^4p}{(2\pi)^4} \left[\ln \Pi_{b_L} + \ln \left(p^2 \Pi_{t_L} \Pi_{t_R} - \Pi_{t_L t_R}^2 \right) \right]$$

Contino, da Rold, Pomarol, '06

Form factors are simple functions:

$$\widehat{\Pi}[m_1, m_2, m_3] = \frac{\left(m_2^2 + m_3^2 - p^2\right)}{p^4 - p^2(m_1^2 + m_2^2 + m_3^2) + m_1^2 m_2^2}$$
$$\widehat{M}[m_1, m_2, m_3] = -\frac{m_1 m_2 m_3}{p^4 - p^2(m_1^2 + m_2^2 + m_3^2) + m_1^2 m_2^2}$$

Potential is finite with a single SO(5) multiplet per SM field!

What is the Higgs mass?

CHM5 ESTIMATES

$$\mathcal{L}_{Yuk} = y_t f \, \frac{s_h c_h}{h} (\bar{q}_L H^c t_R + h.c.) \qquad \longrightarrow \qquad V(h)_{Yuk} \sim N_c \frac{y_t^2}{16\pi^2} m_f^2 f^2 s_h^2 c_h^2$$

 $\mathcal{L}_{kin} = \epsilon_L^2 \, s_h^2 \, \bar{t}_L \, D t_L + 2 \, \epsilon_R^2 \, s_h^2 \, \bar{t}_R \, D t_R \qquad -$

$$\longrightarrow V(h)_{kin} \sim N_c \frac{2\epsilon_R^2 - \epsilon_L^2}{32\pi^2} m_f^4 s_h^2$$

CHM5 ESTIMATES

$$\mathcal{L}_{Yuk} = y_t f \, \frac{s_h c_h}{h} (\bar{q}_L H^c t_R + h.c.) \qquad \longrightarrow \qquad V(h)_{Yuk} \sim N_c \frac{y_t^2}{16\pi^2} m_f^2 f^2 s_h^2 c_h^2$$

$$\mathcal{L}_{kin} = \epsilon_L^2 \, s_h^2 \, \bar{t}_L \, /\!\!D t_L + 2 \, \epsilon_R^2 \, s_h^2 \, \bar{t}_R \, /\!\!D t_R \qquad \longrightarrow \qquad V(h)_{kin} \sim N_c \frac{2\epsilon_R^2 - \epsilon_L^2}{32\pi^2} \, m_f^4 \, s_h^2$$

Potential:

$$V(h) \approx \alpha s_h^2 - \beta s_h^2 c_h^2$$
 $s_h \equiv \sin \frac{h}{f} = \frac{v}{f}$

Quartic is determined by top Yukawa,

$$m_h \sim \sqrt{\frac{N_c}{2}} \frac{y_t}{\pi} \frac{m_f}{f} v$$

• CHM5

General scan:

 $f = 500 \,\mathrm{GeV}$

 m_H

Michele Redi, ICHEP 2012, Melbourne

Saturday, July 7, 2012

• CHM5

General scan:

 $f = 500 \,\mathrm{GeV}$

For mH=125 GeV, fermionic partners VERY close. Should be visible at LHC7!

Michele Redi, ICHEP 2012, Melbourne

Saturday, July 7, 2012

$$\Delta = \operatorname{Max}_{i} \left| \frac{\partial \log m_{Z}}{\partial \log x_{i}} \right|$$

 $\Delta_{avg} \sim 30$

SO(6)/SO(5):

Gripaios, Pomarol, Riva, Serra '09

5 GBs:

$$5 = (2, 2) + 1$$

Fermions can be coupled to the $6=(2,2)+2 \times 1$

$$q_L \to \frac{1}{\sqrt{2}} \begin{pmatrix} b_L \\ -ib_L \\ t_L \\ it_L \\ 0 \\ 0 \end{pmatrix} \qquad \qquad t_R \to \begin{pmatrix} 0 \\ 0 \\ 0 \\ i\cos\theta t_R \\ \sin\theta t_R \end{pmatrix}$$

For
$$\theta = \frac{\pi}{4}$$
 singlet becomes exact GB.

 $f = 800 \,\mathrm{GeV}$

stops ≲ I TeV gauginos ≲ 3 TeV SUSY H @ 125 GeV COMP spin-1/2 ≲ TeV spin-I ≲ 3 TeV

CONCLUSIONS

• All relevant features of CHM can be reproduced from a 4D point view. First resonance sufficient for theory & LHC.

• 125 GeV Higgs requires light fermionic partners that may be seen in 2012 or early LHC14.

• Not all models have been fully explored.

ESTIMATES

$$\mathcal{L} = \left(1 + \epsilon_L^2 \sum_i I_L^{(i)}(s_h)\right) \bar{q}_L \partial q_L + \left(1 + \epsilon_R^2 \sum_i I_R^{(i)}(s_h)\right) \bar{t}_R \partial t_R + y_t f M(s_h) \bar{t}_L t_R + h.c. ,$$

Loops of SM fields generate:

$$V_{\text{leading}} \sim \frac{N_c}{16\pi^2} m_{\psi}^4 \sum_i \left[\epsilon_L^2 I_L^{(i)}(s_h) + \epsilon_R^2 I_R^{(i)}(s_h) \right]$$

$$V_{\text{sub-leading}} \sim \frac{N_c}{16\pi^2} m_{\psi}^2 f^2 \left[y_t^2 M^2(s_h) + \dots \right] \qquad \left(y_t \sim \epsilon_L \epsilon_R \frac{m_{\psi}}{f} \right)$$

$$s_h \equiv \sin\frac{h}{f} = \frac{v}{f}$$

Two different trigonometric structures needed to tune.

• Tuning at leading order

$$m_h^2 \sim \frac{N_c}{2\pi^2} y_t \frac{m_\psi^3}{f^3} v^2 \qquad \qquad \longrightarrow \qquad \Delta = \frac{\delta m_h^2}{m_h^2} \sim \frac{f^2}{v^2}$$

• Tuning with sub-leading terms (CHM5, CHM10...)

$$m_h^2 \sim \frac{N_c}{2\pi^2} y_t^2 \frac{m_\psi^2}{f^2} v^2 \qquad \longrightarrow \qquad \Delta = \frac{\delta m_h^2}{m_h^2} \sim \frac{m_\psi}{y_t f} \times \frac{f^2}{v^2}$$

• Composite tR

$$m_h^2 \sim \frac{N_c}{2\pi^2} y_t^2 \frac{m_\psi^2}{f^2} v^2 \qquad \longrightarrow \qquad \Delta = \frac{\delta m_h^2}{m_h^2} \sim \frac{f^2}{v^2}$$