Implications of 125 GeV Higgs in Composite Models

Michele Redi

with Stefania de Curtis and Andrea Tesi 1110.1613 + 1205.0232

ICHEP, 7 July

OUTLINE

- Minimal Effective description of Goldstone boson Higgs
- Higgs and fermion masses in Composite Higgs

COMPOSITE HIGGS

Higgs doublet could be a light remnant of strong dynamics.

```
Strong sector:
resonances +
Higgs bound state
```


spin 1
spin 1/2
$\operatorname{spin} 0 \ldots \quad 2_{\frac{1}{2}}$

COMPOSITE HIGGS

Higgs doublet could be a light remnant of strong dynamics.

```
Strong sector:
resonances +
Higgs bound state
```


$$
\begin{aligned}
& \operatorname{spin} 1 \\
& \text { spin 1/2 } \\
& \text { spin 0.... } \quad 2_{\frac{1}{2}}
\end{aligned}
$$

Particularly compelling if Higgs is a Goldstone Boson. Massless at leading order.

EX: $\quad \frac{S O(5)}{S U(2)_{L} \otimes S U(2)_{R}} \quad \longrightarrow \quad G B=(2,2)$

$$
\mathcal{L}=f^{2} D_{\mu} \Sigma^{i} D^{\mu} \Sigma^{i}+\ldots
$$

Relieves hierarchy problem:

$$
\begin{gathered}
\sim \frac{1}{m_{\rho}}=\frac{1}{\mathrm{TeV}} \\
m_{\rho}=g_{\rho} f
\end{gathered}
$$

$$
1<g_{\rho}<4 \pi
$$

$$
\delta m_{h}^{2} \sim N_{c} \frac{y_{t}^{2}}{8 \pi^{2}} m_{\rho}^{2}
$$

Increasing fCH approximates SM.

$$
\text { DEVIATIONS } \sim \frac{v^{2}}{f^{2}}
$$

Increasing fCH approximates SM.

$$
\text { DEVIATIONS } \sim \frac{v^{2}}{f^{2}}
$$

Spectrum:

$$
\begin{array}{ll}
\bar{Z} & \\
& m_{\rho} \sim 3 \mathrm{TeV} \\
& \\
\begin{array}{l}
\\
m_{h}=125 \mathrm{GeV} \\
m_{W}=80 \mathrm{GeV} \\
0
\end{array} \\
\hline
\end{array}
$$

Reasonable phenomenology can be obtained for $m_{\rho} \sim 3 \mathrm{TeV}$

Possible to realize it in Randall-Sundrum scenarios.

Through AdS/CFT correspondence dual to 4D CFTs. Relevant physics dominated by the lowest modes.

MINIMAL 4D COMPOSITE HIGGS

- One resonance for each SM field

Related work:
Contino, Kramer, Son, Sundrum '06
Panico, Wulzer'II

General picture:

```
Strong sector:
Higgs + (top)
    m\rho
```


General picture:

```
Strong sector:
Higgs + (top)
    m\rho g
```


Gauging $S U(3) \times S U(2) x U(I)$ mixing to fermionic operators

Elementary: SM Fermions + Gauge Fields

They talk through linear couplings:

$$
\begin{gathered}
\mathcal{L}_{\text {gauge }}=g A_{\mu} J^{\mu} \\
\mathcal{L}_{\text {mixing }}=\lambda_{L} \bar{f}_{L} O_{R}+\lambda_{R} \bar{f}_{R} O_{R} \quad \frac{\epsilon \sim \frac{\lambda}{Y}}{\longrightarrow} y_{S M}=\epsilon_{L} \cdot Y \cdot \epsilon_{R}
\end{gathered}
$$

Higgs potential generated at I-loop:

$$
V(h) \sim \frac{N_{c}}{16 \pi^{2}} \epsilon_{L, R}^{2} m_{\rho}^{4} \hat{V}\left(\frac{h}{f}\right)+\ldots
$$

- $\mathrm{SO}(5) / \mathrm{SO}(4)$

Composite spin-I lagrangian:

$$
\begin{array}{cc}
\frac{f_{1}^{2}}{4} \operatorname{Tr}\left|D_{\mu} \Omega\right|^{2}+\frac{f_{2}^{2}}{2}\left(D_{\mu} \Phi\right)^{T}\left(D^{\mu} \Phi\right)-\frac{1}{4 g_{\rho}^{2}} \rho_{\mu \nu}^{a} \rho^{a \mu \nu} \\
\Omega=\frac{S O(5)_{L} \times S O(5)_{R}}{S O(5)_{L+R}} & \Phi=\frac{S O(5)}{S O(4)} \\
D_{\mu} \Omega=\partial_{\mu} \Omega-i A_{\mu} \Omega+i \Omega \rho_{\mu} & D_{\mu} \Phi=\partial_{\mu} \Phi-i \rho_{\mu} \Phi
\end{array}
$$

SO (4) and $\mathrm{SO}(5) / \mathrm{SO}(4)$ spin- I resonances.

Each SM fermion couples to Dirac fermion in a rep of SO(5).

CHM5:

Third generation:

$$
\begin{aligned}
\mathcal{L}^{\mathrm{CHM}_{5}} & =\mathcal{L}_{\text {fermions }}^{e l} \\
& +\Delta_{t_{L}} \bar{q}_{L}^{e l} \Omega_{1} \Psi_{T}+\Delta_{t_{R}} \bar{t}_{R}^{e l} \Omega_{1} \Psi_{\widetilde{T}}+h . c . \\
& +\bar{\Psi}_{T}\left(i D^{\rho}-m_{T}\right) \Psi_{T}+\bar{\Psi}_{\widetilde{T}}\left(i D^{\rho}-m_{\widetilde{T}}\right) \Psi_{\widetilde{T}} \\
& -Y_{T} \bar{\Psi}_{T, L} \Phi_{2}^{T} \Phi_{2} \Psi_{\widetilde{T}, R}-m_{Y_{T}} \bar{\Psi}_{T, L} \Psi_{\widetilde{T}, R}+h . c . \\
& +(T \rightarrow B)
\end{aligned}
$$

$$
+\Delta_{t_{L}} \bar{q}_{L}^{e l} \Omega_{1} \Psi_{T}+\Delta_{t_{R}} \bar{t}_{R}^{e l} \Omega_{1} \Psi_{\widetilde{T}}+\text { h.c. } \quad \longrightarrow \quad \text { Explicit SO(5) breaking }
$$

Explicit SO(5) breaking
Composite physics SO(5)/SO(4)

Coleman-Weinberg effective potential:

$$
V(h)_{\text {fermions }}=-2 N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}}\left[\ln \Pi_{b_{L}}+\ln \left(p^{2} \Pi_{t_{L}} \Pi_{t_{R}}-\Pi_{t_{L} t_{R}}^{2}\right)\right]
$$

Contino, da Rold, Pomarol, '06
Form factors are simple functions:

$$
\begin{aligned}
\widehat{\Pi}\left[m_{1}, m_{2}, m_{3}\right] & =\frac{\left(m_{2}^{2}+m_{3}^{2}-p^{2}\right)}{p^{4}-p^{2}\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)+m_{1}^{2} m_{2}^{2}} \\
\widehat{M}\left[m_{1}, m_{2}, m_{3}\right] & =-\frac{m_{1} m_{2} m_{3}}{p^{4}-p^{2}\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)+m_{1}^{2} m_{2}^{2}}
\end{aligned}
$$

Potential is finite with a single $\mathrm{SO}(5)$ multiplet per SM field!

What is the Higgs mass?

CHM5 ESTIMATES

$$
\mathcal{L}_{Y u k}=y_{t} f \frac{s_{h} c_{h}}{h}\left(\bar{q}_{L} H^{c} t_{R}+h . c .\right) \quad \longrightarrow \quad V(h)_{Y u k} \sim N_{c} \frac{y_{t}^{2}}{16 \pi^{2}} m_{f}^{2} f^{2} s_{h}^{2} c_{h}^{2}
$$

$$
\mathcal{L}_{k i n}=\epsilon_{L}^{2} s_{h}^{2} \bar{t}_{L} D t_{L}+2 \epsilon_{R}^{2} s_{h}^{2} \bar{t}_{R} D t_{R} \quad \longrightarrow \quad V(h)_{k i n} \sim N_{c} \frac{2 \epsilon_{R}^{2}-\epsilon_{L}^{2}}{32 \pi^{2}} m_{f}^{4} s_{h}^{2}
$$

CHM5 ESTIMATES

$$
\mathcal{L}_{Y u k}=y_{t} f \frac{s_{h} c_{h}}{h}\left(\bar{q}_{L} H^{c} t_{R}+h . c .\right) \quad \longrightarrow \quad V(h)_{Y u k} \sim N_{c} \frac{y_{t}^{2}}{16 \pi^{2}} m_{f}^{2} f^{2} s_{h}^{2} c_{h}^{2}
$$

$\mathcal{L}_{k i n}=\epsilon_{L}^{2} s_{h}^{2} \bar{t}_{L} D t_{L}+2 \epsilon_{R}^{2} s_{h}^{2} \bar{t}_{R} D t_{R} \quad \longrightarrow \quad V(h)_{k i n} \sim N_{c} \frac{2 \epsilon_{R}^{2}-\epsilon_{L}^{2}}{32 \pi^{2}} m_{f}^{4} s_{h}^{2}$
Potential:

$$
V(h) \approx \alpha s_{h}^{2}-\beta s_{h}^{2} c_{h}^{2} \quad s_{h} \equiv \sin \frac{h}{f}=\frac{v}{f}
$$

Quartic is determined by top Yukawa,

$$
m_{h} \sim \sqrt{\frac{N_{c}}{2}} \frac{y_{t}}{\pi} \frac{m_{f}}{f} v
$$

- CHM5

General scan:

- CHM5

General scan:

$f=500 \mathrm{GeV}$

For $m H=125 \mathrm{GeV}$, fermionic partners $V E R Y$ close.
Should be visible at LHC7!

Partners above experimental bound $\sim \mathrm{TeV}$

Tuning:

$$
\Delta=\operatorname{Max}_{\mathrm{i}}\left|\frac{\partial \log m_{Z}}{\partial \log x_{i}}\right|
$$

$$
f=800 \mathrm{GeV}
$$

$$
\Delta_{a v g} \sim 30
$$

$\mathrm{SO}(6) / \mathrm{SO}(5):$

5 GBs:

$$
5=(2,2)+1
$$

Fermions can be coupled to the $6=(2,2)+2 \times 1$

$$
q_{L} \rightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{c}
b_{L} \\
-i b_{L} \\
t_{L} \\
i t_{L} \\
0 \\
0
\end{array}\right)
$$

$$
t_{R} \rightarrow\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
i \cos \theta t_{R} \\
\sin \theta t_{R}
\end{array}\right)
$$

For $\theta=\frac{\pi}{4}$ singlet becomes exact GB.

$$
f=800 \mathrm{GeV}
$$

Same correlation Higgs-fermions.
Singlet typically heavier than Higgs unless $\theta \approx \frac{\pi}{4}$

cONCLUSIONS

- All relevant features of CHM can be reproduced from a 4D point view. First resonance sufficient for theory \& LHC.
- 125 GeV Higgs requires light fermionic partners that may be seen in 2012 or early LHCI4.
- Not all models have been fully explored.

-ST| | M AT ES

$$
\begin{aligned}
\mathcal{L} & =\left(1+\epsilon_{L}^{2} \sum_{i} I_{L}^{(i)}\left(s_{h}\right)\right) \bar{q}_{L} \partial q_{L}+\left(1+\epsilon_{R}^{2} \sum_{i} I_{R}^{(i)}\left(s_{h}\right)\right) \bar{t}_{R} \partial t_{R} \\
& +y_{t} f M\left(s_{h}\right) \bar{t}_{L} t_{R}+\text { h.c. }
\end{aligned}
$$

Loops of SM fields generate:

$$
\begin{aligned}
& V_{\text {leading }} \sim \frac{N_{c}}{16 \pi^{2}} m_{\psi}^{4} \sum_{i}\left[\epsilon_{L}^{2} I_{L}^{(i)}\left(s_{h}\right)+\epsilon_{R}^{2} I_{R}^{(i)}\left(s_{h}\right)\right] \\
& V_{\text {sub-leading }} \sim \frac{N_{c}}{16 \pi^{2}} m_{\psi}^{2} f^{2}\left[y_{t}^{2} M^{2}\left(s_{h}\right)+\ldots\right] \quad\left(y_{t} \sim \epsilon_{L} \epsilon_{R} \frac{m_{\psi}}{f}\right) \\
& s_{h} \equiv \sin \frac{h}{f}=\frac{v}{f}
\end{aligned}
$$

Two different trigonometric structures needed to tune.

- Tuning at leading order

$$
m_{h}^{2} \sim \frac{N_{c}}{2 \pi^{2}} y_{t} \frac{m_{\psi}^{3}}{f^{3}} v^{2} \quad \longrightarrow \quad \Delta=\frac{\delta m_{h}^{2}}{m_{h}^{2}} \sim \frac{f^{2}}{v^{2}}
$$

- Tuning with sub-leading terms (CHM5, CHMIO...)

$$
m_{h}^{2} \sim \frac{N_{c}}{2 \pi^{2}} y_{t}^{2} \frac{m_{\psi}^{2}}{f^{2}} v^{2} \quad \longrightarrow \quad \Delta=\frac{\delta m_{h}^{2}}{m_{h}^{2}} \sim \frac{m_{\psi}}{y_{t} f} \times \frac{f^{2}}{v^{2}}
$$

- Composite tR

$$
m_{h}^{2} \sim \frac{N_{c}}{2 \pi^{2}} y_{t}^{2} \frac{m_{\psi}^{2}}{f^{2}} v^{2} \quad \Delta \quad \Delta=\frac{\delta m_{h}^{2}}{m_{h}^{2}} \sim \frac{f^{2}}{v^{2}}
$$

