

Performance of the CMS Level-1 Trigger

Jim Brooke, for the CMS Collaboration

Overview

CMS

Three talks today :

- L1 Trigger Performance J. Brooke
- High Level Trigger Performance S. Beauceron

Level-1 Trigger Architecture

Jim Brooke (Univ. of Bristol)

L1 Trigger Menu

Snapshot of most important triggers in the "6E33" menu

▶ 10 sets of prescale factors, for different conditions and purposes

Peak L1 rate is close to 100kHz at the start of a fill (L=6.6×10³³ cm⁻²s⁻¹)

Total deadtime ~3%

Trigger	Threshold (GeV)	Rate (kHz)	Physics
Single e/γ	20	13	Higgs, SM, EXO
Double e/y	13,7	8	Higgs, SM, SUSY, EXO
Single µ	14 (η <2.1)	7	Higgs, SM, SUSY, EXO
Double µ	10, 0	6	Higgs, SM, EXO
e/γ + μ	12, 3.5	3	SM, SUSY, EXO
μ + e/γ	12, 7	1.5	SM, SUSY, EXO
Single Jet	128	1.5	SM, EXO
Quad Jet	36	3.5	SM, SUSY, EXO
HT	150	5	SUSY, EXO
ET ^{miss}	36	8	SUSY, EXO

Significant work done to reduce rate between 2011 and 2012

- ▶ Improved p_T assignment in CSC Track Finder
- Optimised merging (use of p_T information) in Global Muon Trigger
- ► ~50% rate reduction for full pseudorapidity (30% for $|\eta| < 2.1$)

Triggers with full acceptance in pseudorapidity

- Workhorse single muon with p_T > 16 GeV
- Di-muon trigger with high quality requirements, no p_T threshold

Di-muon trigger critical for $B_S \rightarrow \mu \mu$ Apply invariant mass cuts at HLT

6

Jim Brooke (Univ. of Bristol)

Special trigger for Heavy Stable Charged Particle searches

- Implemented during 2011 run
- Possible due to 50ns LHC bunch spacing

Synchronisation in RPC pattern comparator

- Expand the pulse width to cover two BX
- Muon arriving 1 BX after collision will produce trigger in time with the collision

e/γ Trigger Performance

Much work done to improve performance between 2011 and 2012

- Irradiation of ECAL crystals results in significant reduction in transparency, and hence light yield
- Corrections for this are now applied
- 95% efficiency point (for 15 GeV threshold) improves from 35 to 30 GeV

Anomolous signal rejection

- Direct ionisation in APD single crystal with large E
- Algorithm optimised to improve performance at high PU

e/γ Trigger Performance

Jim Brooke (Univ. of Bristol)

9

Jet Trigger Performance

Topological conditions in Global Trigger For H→bb in VBF

- TriJet trigger with $E_T > 68$, 48, 28 GeV (~7 kHz)
- Require all central, or one forward and two central

For MSSM bbH→bbbb

- TriJet trigger with E_T > 20, 12, 12 GeV
- Require one jet within $\Delta \Phi < 50^{\circ}$, $\Delta \eta < 1.3$ of a muon (p_T > 10 GeV)

Perform jet finding out to $|\eta| < 5.0$ Apply MC-based JES corrections

Energy Sums Performance

Jet seed

PbWO4

Crystal

Pile-up

- ► Low E_T jet multiplicity increases with PU
- H_T trigger rate **strongly dependent on PU**
- Mitigate by using a threshold on the "jet seed"

Jim Brooke (Univ. of Bristol)

HCAL

ECAL

 $\Delta \eta, \Delta \phi = 0.348$

 $\Delta \eta, \Delta \phi = 1.04$

Energy Sums Performance

MET

- Sum over calorimeter towers with $\eta < 3$
- ► E_T^{miss} > 36 GeV

Missing HT

 Vector sum over identified jets (E_T > 10 GeV, eta < 3.0)

Not currently in use, but may offer improved rate vs threshold over ${\sf E}_{{\sf T}}^{\sf miss}$

Summary

CMS Level-1 Trigger is delivering events for physics

Total rate up to 100 kHz, while maintaining low deadtime (~3%)

Much work has been done since 2011 to reduce rates and maintain low thresholds

- Currently running single μ with E_T > 12 GeV ($|\eta| < 2.1$)
- Maintain threshold for single e/γ at E_T > 20 GeV

Pile-up has been a challenge for jet and HT triggers

Addressed by using a threshold on the jet seed

We run a variety of dedicated triggers to maximise physics

- High quality, low threshold di-muon triggers for onia
- Delayed muon triggers
- Topological triggers for difficult jet signatures
- And more...

Expect to maintain good performance throughout the 2012 run, at up to $L = 8 \times 10^{33}$ cm⁻²s⁻¹

Additional µ rate reduction during last technical stop!

Backup

e/γ Algorithm

Jet Algorithm

L1 Single Muon Trigger Efficiency p_T>16 GeV, |η|<2.4