Onset of deconfinement and search for the critical point of strongly interacting matter at CERN SPS energies

Maciej RYBCZYŃSKI Jan Kochanowski University Kielce, Poland

(for the NA49 Collaboration)

OUTLINE

- Confirmation of onset of deconfinement
- Search for critical point of strongly interacting matter
 - ✓ results on fluctuations
 - ✓ intermittency in particle production

QCD considerations suggest a 1st order phase boundary ending in a critical point

hadro-chemical freeze-out points are obtained from statistical model fits to measured particle yields

T and μ_B approach phase boundary and estimated critical point at SPS

evidence of onset of deconfinement from rapid changes of hadron production properties

search for indications of the critical point as a maximum in fluctuations

The kink in pion multiplicity

Deconfinement

Increased entropy production

Steepening of the increase of pion production

 $\langle \pi \rangle$ - total pion multiplicity

 $\langle N_W \rangle$ - number of interacting nucleons

Deconfinement

Decrease of masses of strangeness carriers and the number ratio of strange to non-strange degrees of freedom

A sharp maximum in the strangeness to pion ratio

SEARCH FOR CRITICAL POINT RESULTS ON FLUCTUATIONS

search strategy: 2-dimensional (T, $\mu_{\rm B}$) scan of phase diagram

expected "hill" of fluctuations

freeze-out points from stat. model

Becattini et al, PRC73, 044905 (2006)

- ✓ Deconfinement necessary for observing CP effect (above 30A GeV)
- Expected size of fluctuation signals (~ξ²) limited by short lifetime and size of collision system (correlation lengths ξ~3-6 fm for Pb+Pb)
 M.Stephanov, K.Rajagopal, E.Shuryak, PRD60,114028(1999)

SEARCH FOR CRITICAL POINT RESULTS ON FLUCTUATIONS

dependence on

Predictions of critical QCD

- 1. Net baryon density at midrapidity is an order parameter for the QCD critical point.
- 2. At the critical point the density-density correlation function in transverse momentum space of net baryons at midrapidity obeys a power-law:

$$\langle n_B(\overrightarrow{p_T})n_B(0)\rangle \sim |\overrightarrow{p_T}|^{2\phi_{2,c}}$$

- 3. For the 3D Ising universality class $\phi_{2,c} = 5/6$
- 4. The critical power-law behaviour of the net baryon density-density correlation is transferred also to the proton density-density correlation.

Methodology

- •Such a power-law distribution can be observed through proton intermittency analysis in transverse momentum space.
- •We have to calculate the second factorial moment of the proton transverse momentum distribution $F_2(M)$ as a function of M (M^2 = number of transverse momentum bins).
- •For protons originating from a critical state (without background) we expect:

$$F_2(M) \sim M^{5/3}$$

• In real data background is always present and has to be removed.

Intermittency analysis was performed in the following systems:

- C+A with A=C, N (50000 events)
- Si+A with A = AI, Si, P (100000 events)
- · Pb+Pb (1500000 events)

Event and track selection criteriae:

- Events corresponding to central collisions (centrality 0-12%)
- Particles with center of mass rapidity in the interval [-0.75, 0.75]
- Tracks corresponding to identified protons with at least 80% purity

Background is removed by subtracting the moments of constructed mixed events from those of the data:

$$\Delta F_2(M) = F_2^{(data)}(M) - F_2^{(mixed)}(M)$$

We look for a power-law behaviour $\Delta F_2(M) \sim M^{2\phi_2}$ (exactly at the critical point $\phi_2 = \phi_{2,c} = 5/6$)

2000

10000

 M^2

$\pi^+\pi^-$ pairs

$\pi^+\pi^-$ pairs

SUMMARY

Onset of deconfinement: discovery confirmed

- first LHC data confirm the interpretation,
- results from RHIC agree with the relevant NA49 data

Search for the critical point:

- hints of a maximum of fluctuations in Si+Si at 158A GeV
- the Si+Si and the Pb+Pb systems show strong power-law correlations in the transverse momentum space of protons at midrapidity.
- this finding is compatible with the existence of a critical point in the neighbourhood of the freeze-out states of these systems. The freeze-out state of the C+C system lies at the edge of this critical region and therefore the power-law behaviour is suppressed.
- especially for the Si+Si system these findings support the indication of critical fluctuations.

Back-up slides

SEARCH FOR CRITICAL POINT RESULTS ON FLUCTUATIONS

p+p, p+Pb, forward hemisphere (1.1 < y_{CM} < 2.6)

	ω_{neg}	ω_{pos}	ω_{all}
p+p	0.956 ± 0.003	0.949 ± 0.003	1.211 ± 0.004
p+Pb (minbias)	0.916 ± 0.012	0.902 ± 0.011	1.074 ± 0.013
p+Pb (mid-central)	0.912 ± 0.012	0.892 ± 0.011	1.01 ± 0.012
p+Pb (central)	0.92 ± 0.005	0.883 ± 0.005	1.01 ± 0.005

10⁻¹ o+Pb minimum bias +Pb mid-central 10⁻² 10⁻³ 10⁻⁴ positively charged 10 P(N) 10⁻³ 10⁻⁴ all charged 10⁻¹ 10⁻² 10⁻³ 10⁻⁴ Ν

Multiplicity fluctuations are similar for all analyzed systems