

Combination of the top-quark mass measurements from the Tevatron and from the LHC colliders

Tevatron: arXiv:1207.1069 ATLAS-CONF-2012-095, CMS PAS TOP-12-001

ICHEP, Melbourne, 5-July-2012

The top quark

- The top quark is unique
 - → heaviest elementary particle
 - \rightarrow Yukawa coupling to the Higgs boson close to 1:

special role in the electroweak symmetry breaking ?

→ decays before hadronizing: unique way to observe a bare quark

$$\mathcal{L}_{\text{Yukawa}} = -\lambda_t \overline{\psi_{Lt}} \Phi \psi_{Rt}$$
$$\lambda_t \approx 1 \text{ !!}$$
$$m_t \gg m_b$$
$$\tau \approx 5.10^{-25} \text{s} << \Lambda_{\text{QCD}}^{-1}$$

- Main production: tt pairs by strong interaction
 - \rightarrow properties are studied using this mode
- Decay
 - → B(t $_{\rightarrow}$ Wb) ≈1 in the standard model
 - \rightarrow tt signature classified according to the W decay

The top-quark mass

- free parameter of the standard model
 - \rightarrow precision on m_t important

(loop corrections involving the top quark)

→ test of the consistency of the SM (direct vs indirect Higgs mass)

$$m_W^2 = \frac{\pi \alpha}{\sqrt{2}G_F \sin^2 \theta_W} \frac{1}{1 - \Delta r}$$

M_w [GeV]

The top-quark mass

- free parameter of the standard model
 - \rightarrow precision on m_t important

(loop corrections involving the top quark)

→ test of the consistency of the SM (direct vs indirect Higgs mass)

$$m_W^2 = \frac{\pi \alpha}{\sqrt{2}G_F \sin^2 \theta_W} \frac{1}{1 - \Delta r}$$

M_w [GeV]

How to measure the top-quark mass ?

- 3 different methods to extract directly the top-quark mass
 - \rightarrow template method:

compare an observable in data with MC generated with different masses

 \rightarrow matrix element method:

build an event probability based on the LO tt matrix element using the full kinematics of the event

 \rightarrow ideogram method:

event likelihood computed as a convolution of a Gaussian resolution function with a Breit-Wigner (signal)

for channel with at least one W decaying hadronically,
 can calibrate the jet energy scale (JES) constraining M_{jj} to M_W
 need to calibrate the method to correct for any potential biases

Top-quark mass measurements at the Tevatron

• Tevatron combination (using up to 5.8 fb⁻¹)

→ choose the best (independent) measurement per channel in each experiment

Decay channel or method	Tevatron period	Experiment	Integrated luminosity $[fb^{-1}]$	Number of events	Background [%]	m_t [GeV]	Uncertainty on m_t [%]
Lepton+jets	Run II	CDF	5.6	1087	17	$173.00 \pm 0.65 \pm 1.06$	0.72
Lepton+jets	Run II	D0	3.6	615	27	$174.94 \pm 0.83 \pm 1.24$	0.85
Lepton+jets	Run I	CDF	0.1	76	54	$176.1 \pm 5.1 \pm 5.3$	4.2
Lepton+jets	Run I	D0	0.1	22	22	$180.1 \pm 3.6 \pm 3.9$	2.9
Alljets	Run II	CDF	5.8	2856	71	$172.47 \pm 1.43 \pm 1.40$	1.2
Alljets	Run I	CDF	0.1	136	79	$186.0 \pm 10.0 \pm 5.7$	6.2
Dileptons	Run II	CDF	5.6	392	23	$170.28 \pm 1.95 \pm 3.13$	2.2
Dileptons	Run II	D0	5.3	415	21	$174.00 \pm 2.36 \pm 1.44$	1.6
Dileptons	Run I	CDF	0.1	8	16	$167.4 \pm 10.3 \pm 4.9$	6.8
Dileptons	Run I	D0	0.1	6	25	$168.4 \pm 12.3 \pm 3.6$	7.6
$E_T + jets$	Run II	CDF	5.7	1432	32	$172.32 \pm 1.80 \pm 1.82$	1.5
Decay length	Run II	CDF	1.9	375	30	$166.90~\pm~9.00~\pm~2.82$	5.7

Combination of the top-quark mass at the Tevatron

• Method: Best Linear Unbiased Estimate

$$m_t^{\text{comb}} = \sum_{i=1}^{12} w_i \, m_t^i \qquad \qquad w_i = \frac{\sum_{j=1}^{12} \text{Covariance}^{-1} \left(m_t^i, m_t^j \right)}{\sum_{i=1}^{12} \sum_{j=1}^{12} \text{Covariance}^{-1} \left(m_t^i, m_t^j \right)}$$

- Systematics
 - → separated into 14 parts to get the correct pattern of correlation between channels, run periods and experiments
 - → several years of discussion between CDF and D0 to agree on a common list of systematics on systematic evaluations, on systematic splitting, and on systematic correlations

Jet energy scale systematics

- Large source of systematic uncertainties: splitted in 7 parts
 - * Light-jet response (1) (rJES): specific to CDF measurements, calibration of JES using single-pion response in data and in MC by tuning the simulation

100% correlated only within CDF

* Light-jet response (2) (dJES): absolute and relative (η -dependent) calibration of JES using γ +jets events

in D0, η -dependent calibration in CDF

100% correlated within the same experiment and the same run period

- * <u>Out-of-cone corrections (cJES)</u>: out-of-cone corrections to MC showers for CDF and D0 Run I 100% correlated between all measurements
- * Offset (UN/MI): noise from uranium decay, only for D0 Run I

100% correlated within D0 Run I

* Model for b jets (bJES): from difference between models of b-jet hadronization

100% correlated between all measurements

* <u>Response for b/q/g jets (aJES)</u>: difference in response between b, quark and gluon jets

100% correlated within the same experiment and the same run period

* <u>in-situ light-jet calibration (iJES)</u>: for channel with at least one W decaying hadronically, calibrate the jet energy scale constraining M_{jj} to M_W (scaling with statistics)

uncorrelated

Other systematics

- 7 non-JES uncertainty sources:
 - * <u>Jet modeling</u>: from uncertainties in jet identification efficiency and jet smearing at D0 100% correlated within D0 Run II
 - * <u>Lepton modeling</u>: electron and muon pt scale uncertainties (+ muon smearing for D0) 100% correlated within the same experiment and the same run period
 - * <u>Signal modeling</u>: PDF, $q\bar{q}/gg$ fraction, higher-order QCD corrections, ISR/FSR, hadronization model, color reconnection
 - 100% correlated between all measurements
 - * Multiple interaction model: from modeling of pile-up in the MC

100% correlated within the same experiment and the same run period

- * <u>Background from theory</u>: NLO fraction of heavy flavor jets in W+jets, factorization/renormalization scales in W+jets simulation, theoretical cross sections used for MC normalization 100% correlated between all measurements in the same channel
- * <u>Background based on data</u>: MC/data difference in background distributions, signal/bkg fraction 100% correlated within the same experiment and the same run period in the same channel
- * Calibration method: uncertainty from the calibration curve

uncorrelated between all measurements

Tevatron top mass combination results

 $m_t^{ ext{comb}} = 173.18 \pm 0.56 \,(ext{stat}) \pm 0.75 \,(ext{syst}) \ ext{GeV}$ = 173.18 ± 0.94 \ ext{GeV}

submitted to PRD, arXiv:1207.1069

Tevatron combination and perpectives

Source of uncertainty	Combination uncertainty (GeV)
Jet energy scale systematics	
Light-jet response (1)	0.12
Light-jet response (2)	0.19
Out-of-cone correction	0.04
Offset	0.00
Model for b jets	0.15
Response to $b/q/g$ jets	0.12
in-situ light-jet calibration	0.39
Other systematics	
Jet modeling	0.11
Lepton modeling	0.10
Signal modeling	0.51
Multiple interactions model	0.00
Background from theory	0.14
Background based on theory	0.11
Calibration method	0.09
Statistical uncertainty	0.56
Total JES uncertainty	0.49
Other systematic uncertainty	0.57
Total uncertainty	0.94

• Expectation for the final top-quark mass measurement at Tevatron

→ precision around 0.7-0.8 GeV

Top-quark mass measurements at the LHC

• 7 inputs to the the combination (LHC @ 7 TeV)

→ ATLAS: I+jets 2010 (35 pb⁻¹), I+jets 2011 (1.0 fb⁻¹), alljets 2011 (2.0 fb⁻¹)

→ CMS: dilepton 2010 (36 pb⁻¹), I+jets 2010 (36 pb⁻¹), dilepton 2011 (2.3 fb⁻¹), µ+jets 2011 (4.7 fb⁻¹)

	ATLAS CMS												
	2010	20	11	20	10	20	011						
	l+jets	l+jets	all jets	di-l	l+jets	di-l	μ +jets						
[GeV]													
Measured muop	169.3	174.5	174.9	175.5	173.1	173.3	172.6						
Stat	4.0	0.6	2.1	4.6	2.1	1.2	0.4						
iJES	n/a	0.4	n/a	n/a	n/a	n/a	0.4						
aJES	n/a	n/a	n/a	n/a	n/a	n/a	n/a						
bJES	2.5	1.6	1.4	0.9	0.9	1.1	0.7						
cJES	n/a	n/a	n/a	n/a	n/a	n/a	n/a						
dJES	2.1	0.7	2.1	2.1	2.1	2.0	0.2						
rJES	n/a	n/a	n/a	3.3	n/a	n/a	n/a						
Lept	n/e	n/e	n/e	0.3	n/e	0.2	n/e						
MC	1.0	0.4	0.5	0.4	n/e	0.1	n/e						
Rad	2.5	1.0	1.7	0.9	1.2	0.8	0.8						
on) cr	0.6	0.6	0.6	0.5	0.5	0.5	0.5						
PDF	0.5	0.1	0.6	0.5	0.1	0.4	0.1						
DTMO	1.2	0.3	0.5	0.6	0.4	0.7	0.3						
UE	0.6	0.6	0.6	1.4	0.2	0.6	0.6						
BGMC	1.8	0.1	n/a	0.1	0.2	n/a	0.1						
BGDT	0.6	0.5	1.9	n/a	0.4	0.4	n/a						
Meth	0.4	0.1	1.0	0.3	0.1	0.4	0.2						
MHI	0.7	< 0.05	n/e	1.0	0.1	0.2	0.4						
[GeV]													
Total Syst. Unc	4.9	2.3	3.9	4.6	2.7	2.7	1.5						
Total Unc.	6.3	2.4	4.4	6.5	3.4	3.0	1.5						
Comb. Coeff.[%]	-6.8	29.9	-0.4	-1.9	-0.2	-4.8	84.3						
Relative importance[%]	5.3	23.3	0.3	1.5	0.2	3.7	65.7						
Pull	-0.6	0.6	0.4	0.3	-0.1	0.0	-1.1						

LHC top-quark mass combination result

 $m_{\rm top} = 173.3 \pm 0.5 \, (\text{stat}) \pm 1.3 \, (\text{syst}) \, \text{GeV}$

LHC top-quark mass combination

	LHC	Tev. 2011
	comb.	comb.
[GeV]		
Measured m _{top}	173.34	173.18
Stat	0.47	0.56
iJES	0.38	0.39
aJES	n/a	0.09
bJES	0.68	0.15
cJES	n/a	0.05
dJES	0.07	0.20
rJES	0.06	0.12
Lept	0.01	0.10
MC	0.04	
Rad	0.69	
CR	0.55	
PDF	0.01	0.51
DTMO	0.19	0.10
UE	0.47	0.00
BGMC	0.01	0.14
BGDT	0.16	0.11
Meth	0.13	0.09
MHI	0.25	0.08
[GeV]		
Total Syst. Unc	1.33	0.75
Total Unc.	1.40	0.94
Comb. Coeff.[%]	$\chi^2/ndf = 2.5/6$	
Relative importance[%]	$\chi^2 \text{ prob} = 87\%$	
Pull		

- correlation checks
 - → assumed correlations varied from 100% to 0%: negligible influence on the result (below 200 MeV)

Conclusion

- First publication of the combination of top-quark mass measurement from the Tevatron (using up to 5.8 fb⁻¹): arXiv:1207.1069
 → total uncertainty below 1 GeV
 - \rightarrow 0.7-0.8 could be expected with the final mass measurements

 $m_t^{
m comb} = 173.18 \pm 0.56 \,(
m stat) \pm 0.75 \,(
m syst) \,\,\, {
m GeV} = 173.18 \pm 0.94 \,\,\, {
m GeV}$

- First combination of the LHC top-quark mass measurements
 - → total uncertainty: 1.4 GeV

 $m_{\rm top} = 173.3 \pm 0.5 \, ({\rm stat}) \pm 1.3 \, ({\rm syst}) \, {\rm GeV}$

 \rightarrow with more statistics, m_{top} in specific phase-space regions

Frédéric Déliot, ICHEP-Melbourne, 5 July 2012

Backup

Tevatron + LHC top mass combination

With some naive assumptions for some of the systematic correlations, the weight of the LHC combination is $\sim 25\%$.

Top-quark mass inputs for the Tevatron combination

to be submi	tted to) PRD	Light-jet response (1)	Light-jet response (2)	Out-of-cone correction	Offset	Model for b jets	Response to $b/q/g$ jets	In-situ light-jet calibration	Jet modeling	Lepton modeling	Signal modeling	Multiple interactions model	Background from theory	Background based on data	Calibration method	Statistical uncertainty	Total JES uncertainty	Other systematic uncertainty	Total uncertainty
Channel	Run	Exp.		Jet e	energy	scale :	system	atics				Other	system	natics						
Lepton+jets Lepton+jets Lepton+jets Lepton+jets Alljets Alljets Dileptons Dileptons Dileptons Dileptons $\!$	II I I I I I I I I I I I I I I I I I I	CDF D0 CDF D0 CDF CDF D0 CDF D0 CDF D0 CDF CDF	0.41 n/a 3.4 n/a 0.38 4.0 2.01 n/a 2.7 n/a 0.45 0.24	$\begin{array}{c} 0.01 \\ 0.63 \\ 0.7 \\ 2.5 \\ 0.04 \\ 0.3 \\ 0.58 \\ 0.56 \\ 0.6 \\ 1.1 \\ 0.05 \\ 0.06 \end{array}$	0.27 n/a 2.7 2.0 0.24 3.0 2.13 n/a 2.6 2.0 0.20 n/a	n/a n/a 1.3 n/a n/a n/a 1.3 n/a 1.3 n/a n/a	$\begin{array}{c} 0.23 \\ 0.07 \\ 0.6 \\ 0.7 \\ 0.15 \\ 0.6 \\ 0.33 \\ 0.20 \\ 0.8 \\ 0.7 \\ 0.00 \\ 0.15 \end{array}$	0.13 0.26 n/e 0.03 n/e 0.14 0.40 n/e n/e 0.12 n/e	0.58 0.46 n/a n/a 0.95 n/a n/a 0.55 n/a n/a 1.54 n/a	0.00 0.36 n/e 0.00 n/e 0.00 0.50 n/e n/e 0.00 0.00	$\begin{array}{c} 0.14 \\ 0.18 \\ n/e \\ n/a \\ n/a \\ 0.27 \\ 0.35 \\ n/e \\ n/e \\ n/a \\ n/a \end{array}$	$\begin{array}{c} 0.56 \\ 0.77 \\ 2.7 \\ 1.3 \\ 0.64 \\ 2.1 \\ 0.80 \\ 0.86 \\ 3.0 \\ 1.9 \\ 0.78 \\ 0.90 \end{array}$	0.10 0.05 n/e 0.08 n/e 0.23 0.00 n/e n/e 0.16 0.00	$\begin{array}{c} 0.27 \\ 0.19 \\ 1.3 \\ 1.0 \\ 0.00 \\ 1.7 \\ 0.24 \\ 0.00 \\ 0.3 \\ 1.1 \\ 0.00 \\ 0.80 \end{array}$	0.06 0.23 n/e 0.56 n/e 0.14 0.20 n/e n/e 0.12 0.20	$\begin{array}{c} 0.10 \\ 0.16 \\ 0.0 \\ 0.6 \\ 0.38 \\ 0.6 \\ 0.12 \\ 0.51 \\ 0.7 \\ 1.1 \\ 0.14 \\ 2.50 \end{array}$	$\begin{array}{c} 0.65 \\ 0.83 \\ 5.1 \\ 3.6 \\ 1.43 \\ 10.0 \\ 1.95 \\ 2.36 \\ 10.3 \\ 12.3 \\ 1.80 \\ 9.00 \end{array}$	$\begin{array}{c} 0.80 \\ 0.83 \\ 4.4 \\ 3.5 \\ 1.06 \\ 5.0 \\ 3.01 \\ 0.90 \\ 3.9 \\ 2.7 \\ 1.64 \\ 0.25 \end{array}$	$\begin{array}{c} 0.67 \\ 0.94 \\ 2.8 \\ 1.6 \\ 0.91 \\ 2.6 \\ 0.88 \\ 1.11 \\ 3.0 \\ 2.3 \\ 0.78 \\ 2.80 \end{array}$	$1.23 \\ 1.50 \\ 7.3 \\ 5.3 \\ 2.00 \\ 11.5 \\ 3.69 \\ 2.76 \\ 11.4 \\ 12.8 \\ 2.56 \\ 9.43$

Top-quark mass inputs for the LHC combination

	Uncertainty Cate	gories		Correlation							
				ATLAS			CI	MS		ρ_{exp}	ρ_{LHC}
Tevatron	ATLAS	CMS	2010	2011	2011	2010	2010	2011	2011		
			l+jets	l+jets	all jets	di-l	l+jets	di-l	µ+jets		-
	Statistics		4.0	0.6	2.1	4.6	2.1	1.2	0.4	0	0
iJES	Jet Scale Factor	Jet Scale Factor		0.4					0.4	0	0
aJES											
bJES	JES b-jet	JES b-jet	2.5	1.6	1.4	0.9	0.9	1.1	0.7	1	0.5
cJES											
dJES	JES light-jet	JES light-jet	2.1	0.7	2.1	2.1	2.1	2.0	0.2	1	0
rJES		residual-JES				3.3				0	0
LepPt		Lepton p_T Scale				0.3		0.2		1	0
MC	MC Generator	MC Generator	0.7	0.3	0.5	0.4		0.1			
	Hadronisation		0.7	0.2	(*)						
	Sum	Sum	1.0	0.4	0.5	0.4		0.1		1	0.5
Rad	ISR/FSR	ISR/FSR	2.5	1.0	1.7	0.2	0.2				
		Q-Scale				0.6	1.1	0.4	0.8		
		Jet-Parton Scale				0.7	0.4	0.7	0.3		
	Sum	Sum	2.5	1.0	1.7	0.9	1.2	0.8	0.8	1	0.5
CR	Colour Recon.		0.6	0.6	0.6	0.5	0.5	0.5	0.5	1	1
PDF	Proton PDF	Proton PDF	0.5	0.1	0.6	0.5	0.1	0.4	0.1	1	1
	Jet Energy Res.	Jet Energy Res.	0.9	0.1	0.3	0.5	0.1	0.3	0.2		
	Jet Rec. Eff.		0.5	< 0.05	0.2						
	b-tagging	b-tagging	0.5	0.3	0.3	0.4	0.1	0.5	0.2		
	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss}$		0.1		0.1	0.4	0.4	0.1		
DetMod	Sum	Sum	1.2	0.3	0.5	0.7	0.4	0.7	0.3	1	0
	Underlying	Underlying									
UE	Event	Event	0.6	0.6	0.6	1.4	0.2	0.6	0.6	1	0
	W+jet Norm.		1.6								
	W+jet Shape		0.8	0.1							
		background				0.1	0.2		0.1		
BGMC	Sum	Sum	1.8	0.1		0.1	0.2		0.1	1	1
	W+jet Norm.			0.4							
	QCD Norm.	QCD Norm.	0.5	0.2			0.4	0.4			
	QCD Shape		0.4	0.3	1.9						
BGData	Sum	Sum	0.6	0.5	1.9		0.4	0.4		0	0
Method	Method Calib.	Method Calib.	0.4	0.1	1.0	0.3	0.1	0.4	0.2	0	0
MHI	Pile-up	Pile-up	0.7	< 0.05		1.0	0.1	0.2	0.4	1	1

Cross checks of the Tevatron combination

- Combinations
 - \rightarrow for each tt decay mode
 - → for each run period
 - \rightarrow for each experiment

Subset	$m_t^{\rm comb}$		Consistency χ^2 (Degrees of freedom = 1)						χ^2 probability							
		Lepton+jets	Alljets	Dileptons	$p_T + jets$	Run II – Run I	CDF - D0	Lepton+jets	Alljets	Dileptons	${\not\!\! \! I}_T + {\rm jets}$	Run II – Run I	CDF - D0			
Lepton+jets Alljets Dileptons E_T +jets	$\begin{array}{c} 173.4 \pm 1.0 \\ 172.7 \pm 1.9 \\ 171.1 \pm 2.1 \\ 172.1 \pm 2.5 \end{array}$	0.14 1.51 0.28	0.14 0.40 0.04	$ \begin{array}{r} 1.51 \\ 0.40 \\ \\ 0.12 \end{array} $	0.28 0.04 0.12			71% 22% 60%	71% — 53% 85%	22% 53% 73%	60% 85% 73%					
Run II Run I CDF	173.6 ± 1.0 180.0 ± 4.1 172.5 ± 1.0					2.89						9%				
D0	174.9 ± 1.4						2.56						11%			