Top quark properties
(except for FB asymmetry, polarization, spin correlations, W helicity, mass)

Christian Schwanenberger
University of Manchester
on behalf of

36th International Conference on High-Energy Physics
Melbourne
05/07/2012
The Top Quark

- needed as isospin partner of bottom quark
- discovered in 1995 by CDF and DØ: $m_{\text{top}} \sim \text{gold atom}$
- large coupling to Higgs boson ~ 1: important role in electroweak symmetry breaking?
- short lifetime: $\tau \sim 5 \cdot 10^{-25} \text{s} \ll \Lambda_{\text{QCD}}^{-1}$: decays before fragmenting
 \rightarrow observe “naked” quark

$\Gamma_t = 1/\tau$

Is the top quark the particle as predicted by the SM?
Outline

Top quark decay branching ratios

Width and lifetime

Top quark couplings (FCNC)

Conclusions
Outline

Top quark decay branching ratios

Width and lifetime

Top quark couplings (FCNC)

Conclusions
Top quark couplings
Measurement of Branching Fractions

Standard Model:

\[R_{SM} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2} = |V_{tb}|^2 \approx 1 \]

beyond SM:

\[R \neq 1 \]

e.g. decay into 4th generation quark: \(R < 1 \)
sensitive to b disappearance

\[R = \frac{B(t \to Wb)}{B(t \to Wq)} \]

\[V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \]

\(V \) changes fractions of b-tagged jets:

DØ Run II

- 0 tag
- 1 tag
- ≥ 2 tags
Measurement of Branching Fractions

dilepton

topological information and b-tagging
Simultaneous Measurement of σ and R

Maximize total Likelihood function simultaneously for branching ratio R and top pair production cross section

\[\sigma_{\text{tt}} = 7.74^{+0.67}_{-0.57} \text{ (stat+syst) pb} \]

\[R = 0.90 \pm 0.04 \text{ (stat+syst)} \]

agrees with SM within 2.5\textsigma

using unitarity of CKM matrix:

\[0.90 < |V_{tb}| < 0.99 \text{ @ 95\% C.L.} \]

Outline

Top quark decay branching ratios
Width and lifetime
Top quark couplings (FCNC)
Conclusions
Top Decay Width

- indirect determination (direct extraction not sensitive enough)

t-channel cross section:

\[\sigma(t\text{-channel}) = 2.26 \pm 0.12 \text{ pb} \]

approximate NNNLO, \(m_t = 172.5 \text{ GeV} \)
Top Decay Width

- indirect determination (direct extraction not sensitive enough)

t-channel cross section:

\[\sigma(t\text{-channel}) = 2.26 \pm 0.12 \text{ pb} \]

approximate NNNLO, \(m_t = 172.5 \text{ GeV} \)

partial decay width:

\[\Gamma(t\rightarrow Wb) = 1.33 \text{ GeV} \]

NLO, \(m_t = 172.5 \text{ GeV} \)
Top Decay Width

- indirect determination (direct extraction not sensitive enough)

t-channel cross section:

\[\sigma(t\text{-channel}) = 2.26 \pm 0.12 \ 	ext{pb} \]

approximate NNNLO, \(m_t = 172.5 \ 	ext{GeV} \)

partial decay width:

\[\Gamma(t \to Wb) = 1.33 \ 	ext{GeV} \]

NLO, \(m_t = 172.5 \ 	ext{GeV} \)

- combine both measurements
- assume that coupling in top production and decay is the same

\[\Gamma_t = \frac{\Gamma(t \to Wb)}{\beta(t \to Wb)} \]

\(\bar{t}t \) production
Observation of t–Channel Production

- remove s/t channel constraint which could be changed by new physics
- train multivariate analysis for t–channel
- measure t–channel and s–channel simultaneously

observation with 5.5σ

\[\sigma(p\bar{p} \rightarrow tqb + X) = 2.90 \pm 0.59 \text{ pb} \]

\[\sigma(\text{t-channel}) = 2.26 \pm 0.12 \text{ pb} \]

approximate NNNLO, \(m_t = 172.5 \text{ GeV} \)

\(m_t = 172.5 \text{ GeV} \)
Top Decay Width

t-channel cross section:

\[\sigma(p\bar{p} \rightarrow t\bar{q}b + X) = 2.90 \pm 0.59 \text{ pb} \]

\[\text{m.} = 172.5 \text{ GeV} \]

partial decay width:

\[R = 0.90 \pm 0.04 \text{ (stat+syst)} \]

\[\Gamma_t = 2.00^{+0.47}_{-0.43} \text{ GeV} \]

\[\tau_t = (3.29^{+0.90}_{-0.63}) \times 10^{-25} \text{ s} \]

⇒ **most precise determination**

Phys. Rev. D84 012008 (2011)
Top Decay Width

t-channel cross section:

\[\sigma(p\bar{p} \rightarrow tqb + X) = 2.90 \pm 0.59 \text{ pb} \]

\[m_t = 172.5 \text{ GeV} \]

partial decay width:

\[R = 0.90 \pm 0.04 \text{ (stat+syst)} \]

\[|V_{tb}| > 0.81 \text{ at the 95\% C.L.} \]
Top Decay Width

t-channel cross section:

\[\sigma(p\bar{p} \rightarrow tqb + X) = 2.90 \pm 0.59 \text{ pb} \]

\[m_t = 172.5 \text{ GeV} \]

partial decay width:

\[R = 0.90 \pm 0.04 \text{ (stat+syst)} \]

4th generation b' quark:

\[m_{b'} > m_t - m_W \]

\[|V_{td}|, |V_{ts}| \ll 1 \]

\[|V_{tb'}|^2 = 1 - |V_{tb}|^2 \]

\[|V_{tb}| > 0.81 \text{ at the 95\% C.L.} \]

\[|V_{tb'}| < 0.59 \text{ at 95\% C.L.} \]
Top quark decay branching ratios
Width and lifetime
Top quark couplings (FCNC)
Conclusions
Search for FCNC in Top Quark Decays

\[\mathcal{L}_{\text{FCNC}} = \frac{e}{2 \sin \theta_W \cos \theta_W} \bar{t}\gamma_\mu (v_Z - a_Z \gamma_5) q Z^\mu + h.c. \]

- select 3 leptons, missing transverse momentum, 2 jets
Search for FCNC in Top Quark Decays

3 leptons + 0 jets

3 leptons + 1 jet

3 leptons + ≥2 jets
Search for FCNC in Top Quark Decays

B(\(t \rightarrow Zq\)) < 3.2% (3.8% expected)

95% C.L.
Excluded Regions by Colliders

LEP

\[\gamma/\pi \]

Excluded at 95% C.L.

- $m_t = 175 \text{ GeV}$
- $\sigma_{t\bar{t}} = 6.90 \text{ pb}$
- $a_{\text{uZ}} = v_{\text{tcZ}} = a_{\text{tcZ}} = \kappa_{\text{tcZ}} = 0$

DØ, $L = 4.1 \text{ fb}^{-1}$

world's best limit

TEVATRON

\[u,c \]

\[\kappa_{\gamma/\pi} \]

\[\kappa/\pi \]
Excluded Regions by Colliders

\[m_t = 175 \text{ GeV}, \sigma_{\gamma} = 6.90 \text{ pb} \]
\[a_{\gamma Z} = v_{\gamma Z} = a_{\gamma Z} = \kappa = 0 \]

DØ, \(L = 4.1 \text{ fb}^{-1} \)

arXiv:1206.0257
Outline

Top quark decay branching ratios
Width and lifetime
Top quark couplings (FCNC)
Conclusions
Conclusions: Top Quark Properties

- Top quark behaves as predicted by SM
- Many high precision measurements
- Competitive (mass) and complementary (spin correlations, FB asymmetry) to LHC

Table: Top Quark Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Measurement</th>
<th>SM Prediction</th>
<th>Lumi (fb⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{tt} (for $M_t = 172.5$ GeV)</td>
<td>$p\bar{p} \rightarrow t\bar{t}$</td>
<td>CDF: 7.5 ± 0.31(stat) ± 0.34(syst) ± 0.15(theory) pb D0: $7.56_{-0.56}^{+0.63}$ (stat + syst + lumi) pb</td>
<td>$7.46_{-0.67}^{+0.45}$ pb</td>
</tr>
<tr>
<td>σ_{tbq} (for $M_t = 172.5$ GeV)</td>
<td>$p\bar{p} \rightarrow t\bar{t}$</td>
<td>CDF: 0.8 ± 0.4 pb ($M_t = 175$ GeV) D0: 2.90 ± 0.59 pb</td>
<td>2.26 ± 0.12 pb</td>
</tr>
<tr>
<td>σ_{tb} (for $M_t = 172.5$ GeV)</td>
<td>$p\bar{p} \rightarrow t\bar{t}$</td>
<td>CDF: $1.8_{-0.5}^{+0.7}$ pb ($M_t = 175$ GeV) D0: $0.68_{-0.35}^{+0.38}$ pb</td>
<td>1.04 ± 0.04 pb</td>
</tr>
<tr>
<td>$R = B(t \rightarrow Wb)/B(t \rightarrow Wq)$</td>
<td></td>
<td>CDF: > 0.61 @ 95% CL D0: 0.90 ± 0.04</td>
<td>1</td>
</tr>
<tr>
<td>$</td>
<td>V_{tb}</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>$\sigma(gg \rightarrow t\bar{t})/\sigma(p\bar{p} \rightarrow t\bar{t})$</td>
<td>$p\bar{p} \rightarrow t\bar{t}$</td>
<td>CDF: $0.07_{-0.07}^{+0.15}$</td>
<td>0.18</td>
</tr>
<tr>
<td>σ_{ttg} (for $M_t = 172.5$ GeV)</td>
<td>$p\bar{p} \rightarrow t\gamma$</td>
<td>CDF: 0.18 ± 0.08(stat + syst + lumi) pb</td>
<td>0.17 ± 0.03 pb</td>
</tr>
<tr>
<td>M_t</td>
<td></td>
<td>Tev: 173.2 ± 0.9 GeV</td>
<td>-</td>
</tr>
<tr>
<td>$M_t - M_t$</td>
<td></td>
<td>CDF: -1.95 ± 1.11(stat) ± 0.59(syst) GeV D0: 0.8 ± 1.8(stat) ± 0.5(syst) GeV</td>
<td>0</td>
</tr>
<tr>
<td>W helicity fraction</td>
<td></td>
<td>Tev: $f_0 = 0.732 \pm 0.063$(stat) ± 0.052(syst)</td>
<td>0.7</td>
</tr>
<tr>
<td>Charge</td>
<td></td>
<td>CDF: $-4/3$ excluded @ 95% CL D0: $</td>
<td>q</td>
</tr>
<tr>
<td>Γ_t</td>
<td></td>
<td>CDF: < 7.6 GeV @ 95% CL D0: $1.99_{-0.55}^{+0.69}$ GeV</td>
<td>1.26 GeV</td>
</tr>
<tr>
<td>spin correlation</td>
<td>$p\bar{p} \rightarrow t\bar{t}$, beam</td>
<td>CDF: 0.72 ± 0.64(stat) ± 0.26(syst) D0: 0.66 ± 0.23(stat + sys)</td>
<td>$0.777_{-0.942}^{+0.027}$</td>
</tr>
<tr>
<td>Charge asymmetry</td>
<td>$p\bar{p} \rightarrow t\bar{t}$</td>
<td>CDF: 0.162 ± 0.041(stat) ± 0.022(syst) D0: 0.196 ± 0.065</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Top quark behaves as predicted by SM
Backup
Top Quark Width

LO: \[\Gamma_t^0 = \frac{G_F m_t^3}{8\pi\sqrt{2}} \]

NLO: \[\Gamma_t = \Gamma_t^0 \left(1 - \frac{M_W^2}{m_t^2}\right)^2 \left(1 + 2\frac{M_W^2}{m_t^2}\right) \left[1 - \frac{2\alpha_s}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2}\right)\right] \]

\[\Gamma_t = 1.26 \text{ GeV for } m_t = 170 \text{ GeV} \]

CDF Conference
Note 10035

CDF: \[\Gamma_t < 7.5 \text{ GeV} \]
(2-dimensional template fit)

⇒ model independent but not really sensitive
Sensitivity to New Physics (I)

t-channel cross section:

\[p \rightarrow W^+ b \]

\[\bar{p} \rightarrow W^- b \]

Branching ratio B(t\rightarrow Wb):

\[\Gamma_t = \frac{\sigma(t\text{-channel}) \Gamma(t \rightarrow Wb)_{SM}}{\mathcal{B}(t \rightarrow Wb) \sigma(t\text{-channel})_{SM}} \]
Combined Method

<table>
<thead>
<tr>
<th>Source</th>
<th>σ_{tt} [pb]</th>
<th>Offset [pb]</th>
<th>$+\sigma$ [pb]</th>
<th>$-\sigma$ [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical only</td>
<td>7.58</td>
<td></td>
<td>+0.24</td>
<td>-0.24</td>
</tr>
<tr>
<td>Muon identification</td>
<td>-0.04</td>
<td>+0.05</td>
<td></td>
<td>-0.05</td>
</tr>
<tr>
<td>Electron identification</td>
<td>+0.14</td>
<td>+0.12</td>
<td></td>
<td>-0.12</td>
</tr>
<tr>
<td>Triggers</td>
<td>-0.09</td>
<td>+0.09</td>
<td></td>
<td>-0.11</td>
</tr>
<tr>
<td>Background normalization</td>
<td>+0.00</td>
<td>+0.07</td>
<td></td>
<td>-0.06</td>
</tr>
<tr>
<td>Signal modeling</td>
<td>-0.06</td>
<td>+0.23</td>
<td></td>
<td>-0.21</td>
</tr>
<tr>
<td>b-tagging</td>
<td>-0.14</td>
<td>+0.12</td>
<td></td>
<td>-0.12</td>
</tr>
<tr>
<td>Monte Carlo statistics</td>
<td>-0.01</td>
<td>+0.06</td>
<td></td>
<td>-0.06</td>
</tr>
<tr>
<td>Fake background</td>
<td>-0.01</td>
<td>+0.06</td>
<td></td>
<td>-0.04</td>
</tr>
<tr>
<td>f_H</td>
<td>-0.00</td>
<td>+0.02</td>
<td></td>
<td>-0.02</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>-0.03</td>
<td>+0.00</td>
<td></td>
<td>-0.00</td>
</tr>
<tr>
<td>Jet reconstruction and identification</td>
<td>+0.18</td>
<td>+0.18</td>
<td></td>
<td>-0.17</td>
</tr>
<tr>
<td>Luminosity</td>
<td>+0.12</td>
<td>+0.51</td>
<td></td>
<td>-0.44</td>
</tr>
<tr>
<td>Template statistics</td>
<td>+0.00</td>
<td>+0.03</td>
<td></td>
<td>-0.03</td>
</tr>
<tr>
<td>Other</td>
<td>+0.01</td>
<td>+0.14</td>
<td></td>
<td>-0.13</td>
</tr>
<tr>
<td>Total systematics</td>
<td>+0.65</td>
<td></td>
<td></td>
<td>-0.58</td>
</tr>
<tr>
<td>Fit result</td>
<td>7.78</td>
<td></td>
<td>+0.77</td>
<td>-0.64</td>
</tr>
</tbody>
</table>

$m_{top} = 172.5$ GeV

$\sigma_{tt} = 7.78^{+0.77}_{-0.64} \text{ (stat+syst+lumi)} \text{ pb}$

±9%
Sensitivity to New Physics (I)

example: charged Higgs with $m_{H^+} < m_t - m_b$

t-channel cross section:

$$\Gamma_t = \frac{\sigma(t\text{-channel}) \, \Gamma(t \to Wb)_{\text{SM}}}{B(t \to Wb) \, \sigma(t\text{-channel})_{\text{SM}}}$$
Sensitivity to New Physics (I)

Example: charged Higgs with $m_{H^+} < m_t - m_b$

t-channel cross section:

\[
\Gamma_t = \frac{\sigma(t\text{-channel}) \cdot \Gamma(t \rightarrow Wb)_{SM}}{\mathcal{B}(t \rightarrow Wb) \cdot \sigma(t\text{-channel})_{SM}}
\]
Sensitivity to New Physics (II)

example: 4\(^{th}\) generation \(b'\) quark with \(m_{b'} > m_t - m_W\)

t-channel cross section:

\[
P \rightarrow W^+ b
\]

branching ratio \(B(t \rightarrow Wb)\):

\[
q \rightarrow \bar{q} W^- u \bar{b} \ell_- v
\]

Assume unitarity of the new 4x4 dimensional CKM matrix:

\[
|V_{tb}|^2 + |V_{tb'}|^2 = 1 \quad \text{and} \quad |V_{td}|, |V_{ts}| \text{ small}
\]

Using a flat prior for \(0 \leq |V_{tb}| \leq 1\)

\[
|V_{tb'}| < 0.59 \text{ at 95\% C.L.}
\]

first such limit
Top Pair Production Cross Sections

- good agreement with SM in all channels

- all channels measured except for τ_{had} combination: ±6%!