

Measurements of forward-backward asymmetries in top-quark pair production at the D0 experiment

Alexander Grohsjean on behalf of the D0 Collaboration

36th International Conference on High Energy Physics 2012 July, 6th 2012 Melbourne, Australia

Overview

- Setting the stage
- A_{FB} in 5.4 fb⁻¹ of l+jets events
- First D0 measurement of A⁻¹_{FB} in
 5.4 fb⁻¹ of dilepton events
- $A_{_{FB}}$ and top quark polarization
- Conclusion and outlook

Does the top or anti-top quark more often follow the proton direction?

- different ways to answer this question and quantify asymmetry
 - rapidity difference of top and anti-top

$$\Delta y = y_t - y_t = q_l (y_{t, lep} - y_{t, had}) \qquad \qquad y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z}\right)$$

• rapidity gap used for a **frame-independent** definition

$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

- no asymmetry at LO QCD in SM
- at NLO asymmetries arises from interferences of process not symmetric under t and t exchange

♦ A_{FB} at parton level including NNLL (arXiv:1106.6051) and
 QED corrections (arXiv:1107.2606):

MC@NLO	NLO+NNLL	NLO+QED corr.
(5.0 ± 0.1) %	(7.2 ± 1.0) %	(8.9 ± 0.8) %

- event selection:
 - isolated and high energetic jets and lepton (either electron or muon)
 - one identified b-quark jet
- tt modeled by MC@NLO+Herwig
- main background from W+jets

 (Alpgen+Pythia) and multijet events
 (estimated from data)
 - both nearly symmetric in Δy
- event reconstruction by kinematic fitter
 - using top and W mass constraints
 - including detector resolution
 - \rightarrow only most probable solution kept

• measured $A_{_{FR}}$ at detector level after background subtraction:

 $A_{_{FR}}^{det} = (9.2 \pm 3.7 (stat+syst))\%$

- result agrees within 1.9 SD with the prediction from MC@NLO of $A_{_{\rm FR}}^{}^{det} = (2.4 \pm 0.7)\%$
- result dominated by statistical uncertainty: 3.6%
- largest systematic uncertainty from jets: 0.5%

6th July 2012

- asymmetry depends on several variables like $|\Delta y|$
- new physics could e.g. cause different \mathbf{m}_{t} dependency
 - no significant dependency found at D0
 - largest deviation from SM prediction observed by CDF in high m_{it} bin Forward-Backward To

 regularized unfolding in ∆y to correct for acceptance and reconstruction

 $A_{FR}^{pat} = (19.6 \pm 6.5 (stat+syst))\%$

- result agrees within 2.4 SD with the prediction from MC@NLO
- performed cross check using maximum likelihood unfolding
 - consistent results
 - better description of migrations across ∆y = 0 using reg. unfolding
 - → better statistical strength

unfolding illustration from "Statistical Data Analysis" by Glen Cowan

• lepton based definition offers an alternative way to study A_{fi}

$$A_{FB}^{l} = \frac{N(q_{l} y_{l} > 0) - N(q_{l} y_{l} < 0)}{N(q_{l} y_{l} > 0) + N(q_{l} y_{l} < 0)}$$

- based on well measured angles → sufficient to correct for acceptance
- restrict to $|y_1| < 1.5$ to avoid large acceptance corrections
- using ~1500 of $t\bar{t}$ candidate events:

 $A_{_{FB,l}}^{}^{det} = (14.2 \pm 3.8 (stat+syst))\%$

 $A_{_{FR1}}^{}^{pat} = (15.2 \pm 4.0 (stat+syst))\%$

- result deviates by 3.4 SD from MC@NLO prediction of (2.1 ± 0.1)%
- dominated by statistical uncertainty
- largest systematic of 0.5% (1.6%) from
 - $\mathbf{p}_{T}^{\mathbf{t}}$ modeling on detector (parton) level

Cross Checks

- extracted A_{FB} and A_{FB}⁻¹ for W+jets in background enriched sample
 - both agree well with Alpgen prediction of 2% and 14% resp.
- no dependencies observed on
 - solenoid/toroid polarities
 - lepton charge
 - lepton final state

• the lepton based asymmetry:

 $A_{FB}^{l} = \frac{N(q_{l} y_{l} > 0) - N(q_{l} y_{l} < 0)}{N(q_{l} y_{l} > 0) + N(q_{l} y_{l} < 0)}$

- a definition based on the lepton difference in $\boldsymbol{\eta}$:

$$A_{FB}^{ll} = \frac{N\left(\Delta\eta > 0\right) - N\left(\Delta\eta < 0\right)}{N\left(\Delta\eta > 0\right) + N\left(\Delta\eta < 0\right)}$$

$$\Delta \eta = \eta_{\bar{l}} - \eta_{l}$$

• CP testing asymmetry:

$$A_{FB}^{CP} = \frac{N_{l}(\eta > 0) - N_{l}(\eta < 0)}{N_{\bar{l}}(\eta > 0) + N_{l}(\eta < 0)}$$

reweighted lepton η distributions in MC@NLO considering
 QED corrections (arXiv:1205.6580) to get parton level predictions:

	A _{FB} ¹	A _{FB} ^{II}	A _{FB} ^{CP}
Prediction (%)	4.7 ± 0.1	6.2 ± 0.2	-0.3 ± 0.1

- selection strategy follows event topology
- main background from Z+jets (Alpgen+Pythia)
 - background symmetric in η , asymmetric in $\Delta \eta$
 - good agreement with prediction
- Iepton angles well measured
 - \rightarrow sufficient to correct for acceptance₃₀₀₀
 - checked correction from MC@NLO with acceptance from Z → ll data
- fraction of events with mis-measured lepton charges only 0.2%

• acceptance corrected asymmetries:

	A _{FB} ¹	A _{FB} ^{II}	A _{FB} ^{CP}
Unfolded (%)	5.8 ± 5.3 (stat+syst)	5.3 ± 8.4 (stat+syst)	-1.8 ± 5.3 (stat+syst)
Prediction (%)	4.7 ± 0.1	6.2 ± 0.2	-0.3 ± 0.1

- good agreement with MC@NLO including QED corrections
- statistical uncertainty still large: 5-8%
- main systematic uncertainty from jet uncertainties
- 1+jets and dilepton result for A_{FR}^{-1} consistent within 68%
 - combined using the **BLUE** method (see talk by **F. Déliot**):

 $A_{_{\rm FR}}^{-1}$ = (11.8 ± 3.2) %

agreeing within 2.2 SD with MC@NLO prediction

• l+jets channel contributes ~2/3

- ♦ many BSM models trying to explain A_{FB}, couple to right-handed tops only
 → measurement of top polarization
- longitudinal polarization would show up in B_1 and $B_2 \neq 0$

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1 d\cos\theta_2} = \frac{1}{4} (1 + B_1 \cos\theta_1 + B_2 \cos\theta_2 + C\cos\theta_1 \cos\theta_2)$$

- leptophobic Z' with P-violating top couplings shows effect from polarized tops
 - good agreement between data and SM

- measured asymmetries in l+jets (arXiv:1107.4995) and dilepton (arXiv:1207.0364) channel
 Forward-Backward Top Asymmetry, %
 - unfolded A_{FB} = 19.6% in l+jets agrees within 2.4 SD with MC@NLO prediction of 5.0%
 - combined lepton based asymmetry from 1+jets and dilepton: $A_{rp}^{1} = (11.8 \pm 3.2) \%$

 Porward-Backward Top Asymmetry, %

 Production Level

 CDF, 5.3 fb⁻¹
 Production Level

 ØØ, 5.4 fb⁻¹
 15.8±7.2±1.7

 DØ, 5.4 fb⁻¹
 19.6±6.0^{+1.8}_{-2.6}

 S. Frixione and B.R. Webber, JHEP 06, 029 (2002)
 30

agrees within 2.2 SD with prediction of 4.7%

- however:
 - all results dominated by statistical uncertainty
 - ongoing work for improved predictions
- many models predict very different values for A_{FR}^{1} and A_{FR}^{1}
 - → new results with full data set (~9 fb⁻¹) in l+jets and dilepton in preparation