Single Top Quark Production at the Tevatron

Reinhild Yvonne Peters

Georg-August University Göttingen & DESY

on behalf of the CDF & DØ Collaborations

Motivation: Why study Single Top Quarks?

- Measure the production rate and compare to SM predictions
 - Test of EW interaction
 - Probe for new physics
- Physics beyond the SM could look similar to single top processes
 - Various models look similar to s- or t-channel production
- Direct probe of Wtb interaction
 - Direct measurement of CKM matrix element |V_{tb}|
- Single top similar to WH → testing ground for methods to extract a small signal

Single Top Cross Sections

Single top quark production via electroweak interaction

Collider	s-channel: σ_{tb}	t-channel: σ _{tqb}	Wt-channel: σ _{tw}
Tevatron: pp̄ (1.96 TeV)	1.04 pb	2.26 pb	0.28 pb
LHC: pp (7 TeV)	4.6 pb	64.6 pb	15.7 pb

- Wt-channel: negligible at the Tevatron
- s-channel: challenging at the LHC

The Challenge

- (s+t) production cross section about ½ of t̄t
- Single top signature similar to W+jets background

Modeled using
Alpgen+Pythia/
Herwig

Normalized to Data

Other important backgrounds:

and multijet

Event Selection

Enrich data sample in single top-like events:

Exactly one high p_T isolated electron or muon Large $\not\!\!E_T$ for the neutrino

2, 3 (and 4) jets with high p_T g

Angular and total energy cuts to reject multijet background

Very challenging to understand: high $|\eta|$ and low $\mathbf{p}_{\scriptscriptstyle T}$

Important tool to reject background: b-jet identification

After Event Selection and before b-jet identification

- Before b-jet identification: single top signal hardly visible!
 - S/B of about 1:185
- W+jets normalized to data before b-jet identification

Identification of b-Jets

- Important to increase tt purity
- b-hadron: travels some millimeters before it decays
- Neural Network (DØ)
 combines properties of displaced
 tracks and displaced vertices

After Event Selection and after b-jet Identification

Require 1 or 2 identified b-jets,

S:B about 1:20

 Background enriched samples (tt̄ and W+jets enriched) to check background modeling

 Using counting-only: Systematic uncertainty on background larger than signal

 Use multivariate discriminant techniques to separate signal from background

Further Signal Enhancement: Multivariate Discriminants

- Several techniques used for MVAs
 - Boosted Decision Trees (BDTs)
 - Application of sequential cuts
 - (Bayesian) Neural Networks
 - NEAT
 - Generic algorithms evolving a population of NNs
 - Matrix Elements
 - Use the full event kinematics
- Combination of different techniques
 - BLUE
 - For observation and now:
 use the outputs of the discriminants
 as input to a super-discriminant

Further Signal Enhancement: Multivariate Discriminants

- Several techniques used for MVAs
 - Boosted Decision Trees (BDTs)
 - Application of sequential cuts
 - (Bayesian) Neural Networks

in new 7.5fb⁻¹

analysis

- **NEAT**
 - Generic algorithms evolving a population of NNs
- Matrix Elements
 - Use the full event kinematics
- Combination of different techniques
 - **BLUE**
 - For observation and now: use the outputs of the discriminants as input to a super-discriminant

Further Signal Enhancement: Multivariate Discriminants

- Several techniques used for MVAs
 - Boosted Decision Trees (BDTs)
 - Application of sequential cuts
 - (Bayesian) Neural Networks
 - NEAT
 - Generic algorithms evolving a population of NNs
 - Matrix Elements
 - Use the full event kinematics
- Combination of different techniques
 - BLUE
 - For observation and now:
 use the outputs of the discriminants
 as input to a super-discriminant (BNN)

NEAT

Training and cross section extraction

- Train MVA on
 - s+t channel using SM ratio between s- and t-channel
 - t-channel with s-channel as background in training (not in fit)
 - s-channel with t-channel as background in training (not in fit)
- Bayesian method to extract cross section results
 - Integration over systematic uncertainties (modeled as Gaussian priors)

Results: (s+t)-Channel

Trained discriminants on s+t channel

$$\sigma_{s+t} = 3.43^{+0.73}_{-0.74} pb$$

PRD 84, 112001 (2011)

$$\sigma_{s+t} = 3.04^{+0.57}_{-0.53} pb$$

Main systematic uncertainties from

for $m_t = 172.5 GeV$

- Luminosity
- Jet-energy related uncertainties
- Uncertainties on b-jet identification scale factors

2D Single Top

- s- and t-channel are differently sensitive to new physics
 - Measure both channels simultaneously

Train on t-channel (DØ) or s-channel (CDF)

In agreement with SM prediction

$$\sigma_s = 0.98 \pm 0.63 \ pb$$

$$\sigma_t = 2.90 \pm 0.59 \ pb$$

PLB 705, 313 (2011)

$$\sigma_s = 1.81^{+0.63}_{-0.58} pb$$

$$\sigma_t = 1.49^{+0.47}_{-0.42} pb$$

t-Channel and s-channel

- In 2D: Integrate over s-channel → t-channel cross section
- Result: $\sigma_t = 2.90 \pm 0.59 \ pb$
- First observation of t-channel with
 5.5 standard deviations (SDs) significance
- s-channel trained MVA → not yet significant at DØ

PLB 705, 313 (2011)

$|V_{tb}|$

- Direct extraction of V_{tb} from single top cross section $|V_{tb}|^2 \propto \sigma(s+t)$
 - No assumption about number of generations
 - Assumption: $|V_{ts}|^2 + |V_{td}|^2 << |V_{tb}|^2$

PRD 84, 112001 (2011)

$|V_{tb}|$ revisited

Direct extraction of V_{tb} from partial top width

$$|V_{tb}|^{\gamma} \propto \Gamma(t \rightarrow b)$$

- No assumption about number of generations
- NOT assuming $|V_{ts}|^2 + |V_{td}|^2 << |V_{tb}|^2$
- NOT assuming SM ratio between s- and t-channel cross sections

PRD 85, 091104 (2012)

Summary

- Single Top at Tevatron: A real challenge!
 - Ideas and methods were developed and established
 - From cross section measurements to searches and properties studies

s-channel single top: A Tevatron Legacy

DØ: http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html

CDF: http://www-cdf.fnal.gov/physics/new/top/top.html

BACKUP

The Top Quark

Heaviest known elementary particle:

$$m_{t} = 173.3 \pm 1.1 \text{GeV}$$

arXiv:1007.3178

- Standard Model:
 - Single or pair production
 - Electric charge +2/3 e
 - Short lifetime 0.5x10⁻²⁴s
 - Bare quark no hadronization
 - ~100% decay into Wb
 - Large coupling to SM Higgs boson

The Challenge

- Production cross section about ½ of t̄t
- Single top signature similar to W+jets background

Other important backgrounds:

and multijet

Further Signal Enhancement: Multivariate techniques

- 1. Select variables discriminating signal and background
- 2. Combination via a multivariate analysis (MVA) tool
- 3. Fit the distribution

Results: Single Top Observation 2009

- Observation 14 years after top discovery
- Usage of multiple multivariate techniques by CDF and D0
 - BDT, Matrix Element, (B)NN, NEAT

Final Discriminant

Top Quark Width

Main ingredient: t-channel single top cross section measurement

$$\Gamma_{t} = \frac{\Gamma(t \to Wb)}{B(t \to Wb)}$$

Partial width:

$$\Gamma(t \to Wb) = \sigma(t - channel) \times \frac{\Gamma(t \to Wb)_{SM}}{\sigma(t - channel)_{SM}}$$

- Extract partial and total width from combination of R measurement and t-channel cross section
- Correlations of systematics fully taken into account

Top Quark Width

Definition of R:

$$R = \frac{B(t \to Wb)}{B(t \to \{Wd + Ws + Wb\})}$$

- Using dilepton and lepton+jets tt̄ events
- Measure: $B(t \rightarrow Wb) = 0.90 \pm 0.04$
- Extract partial and total top width

 $B(t \rightarrow \{Wd+Ws+Wb\})=1$

arXiv:1201.4156 [hep-ex]

05.07.2012 Yvonne Peters