Short baseline neutrino and anti-neutrino oscillation studies at the CERN-SPS

Maximiliano Sioli (Bologna University and INFN) on behalf of the NESSiE Collaboration

36th ICHEP, Melbourne, July 4-11, 2012

Outline

- Theoretical motivation
- Experimental motivation
- A conclusive experiment
 - □ Where: CERN
 - □ How: LAr + spectrometers
 - □ When: now!
- Conclusions

Theoretical motivations

- State of the art of (standard) neutrino physics (btw, beyond the SM!)
 - There are 3 species of (light) neutrinos, with $m \leq m_7/2$ (from LEP)
 - They oscillate, so they have mass and mix (flavor basis \neq mass basis)

We know

Present and

- 3 mixing angles θ_{12} , θ_{23} , θ_{13}
- 2 mass square differences Δm_{12}^2 , $\Delta m_{23}^2 \sim \Delta m_{13}^2$
- We do not know
 - Mass hierarchy
- uture physics δ phase (CPV)
 - Mass absolute values
 - Neutrino nature (Dirac vs Majorana)

Theoretical motivations

- Besides this solid scenario the quest for sterile neutrinos never stopped
- A sterile neutrino is a neutral lepton without direct EW coupling (only through mixing with active states)
- A sterile neutrino is nothing but an exotic particle
 - SM automatically introduces sterile neutrino states through mass generation
 - See-saw mechanism introduces "adjustable" neutrino-mass scale

Active-sterile mixing as a function of the right-handed neutrino mass $M_{\rm R}$ for different values of active neutrino masses $m_{\rm v}$

M. Sioli - NESSiE - ICHEP 2012, Melbourne

Experimental motivations

In the last decade a set of experimental results challenged the 3 v framework
 no one conclusive, but all pointing toward the same direction

A conclusive experiment

A coupled system of LAr detector + muon spectrometer for

- Observation of all reaction channels (ν_μ, ν_e; CC, NC) through the unique LAr-TPC imaging capabilities
- Charge separation and muon momentum extension with a magnetized iron spectrometer
- Different sites

near (300 m) + far (1600 m)

Where: CERN North Area

- 100 GeV primary beam fast extracted from SPS
- Target station next to TCC2
- Decay pipe: $L = 100 \text{ m}, \phi = 3 \text{ m}$
- Beam dump: 15 m of Fe with graphite core, followed by μ stations
- Neutrino beam angle: pointing upwards, at -3m in the far detector, ~5 mrad slope

The new SPS neutrino beam

100 GeV protons, on-axis, fast extraction (10.5 μs), CNGS intensity (conservative)
Sharing scenario: 2 years of ν-bar followed by 1 year of ν

M. Sioli - NESSiE - ICHEP 2012, Melbourne

Lar-TPC imaging detectors

- Near location: **T150** (basic structure of T600 already operating at LNGS)
- Far location: **T600** (transportation from LNGS)

M. Sioli - NESSiE - ICHEP 2012, Melbourne

10

NESSiE detector concept

NESSiE (Neutrino Experiment with SpectrometerS in Europe)

<u>Goal</u>:

- Allow charge separation and momentum measurement of as many muons as possible escaping from LAr (large statistics ↔ low sin²2θ)
- □ Go as low as possible in muon momentum (low momenta $\leftrightarrow \text{low } \Delta \text{m}^2$)
- Possibility to also study (NESSiE) internal events (coarser resolution w.r.t. LAr)

Solution:

- □ Air-core magnets for low momentum muons escaping from LAr ($E_{\mu} < 0.5 \text{ GeV/c}$ in NESSiE $\leftrightarrow \langle E_{\nu} \rangle < 1 \text{ GeV}$ in LAr)
- Downstream massive iron dipolar magnets for higher momenta extension

Air-core magnet

- New concept for a large transverse area magnetic field in air (~40 m²)
- **B** = 0.15 T
- Power < 2 MW
- To be coupled to a mm detector (different possibilities under study)

NESSiE iron dipolar magnets

M. Sioli - NESSiE - ICHEP 2012, Melbourne

Detector configuration (far position)

Expected signal rates

pa		NEAR (neg. foc.)	NEAR (pos. foc.)	FAR (neg. foc.)	FAR (pos. foc.)
produce	$v_e + \overline{v}_e$ (LAr)	35 K	54 K	4.2 K	6.4 K
	$v_{\mu} + \overline{v}_{\mu}$ (LAr)	2030 K	5250 K	270 K	670 K
	Appear. test point	590	1900	360	914
detected	v_{μ} (LAr+NESSiE)	230 K	1200 K	21 K	110 K
	v_{μ} (NESSiE)	1150 K	3600 K	94 K	280 K
	\overline{v}_{μ} (Lar+NESSiE)	370 K	56 K	33 K	6.9 K
	\overline{v}_{μ} (NESSiE)	1100 k	300 K	89 K	22 K
	Disappear. test point	1840	4700	1700	5000

NOTE: v "contamination" in anti-v negative polarity beam

- Expected rates for near and far detectors given for 4.5×10¹⁹ pot
- Signal test point fixed at 2 eV² shown as example

Physics reach of the project

- v_e appearance and disappearance signals may share the same Δm_{new}^2 and different mixing angles in a 3+1 scenario
- A two year run with v-bar would to address CPV in one shot with NESSiE

NESSiE time schedule

- Physics proposal submitted to SPSC in Oct 2011 [arXiv: 1111.2242v1]
- In the meanwhile:
 - $\square Request to switch PS \leftrightarrow SPS$
- Joint technical proposal submitted to SPSC in March 2012 [arXiv:1203.3432]
- From green-light, we expect 3 years of prototyping and construction
 → run in 2016

Conclusions

- The search for sterile neutrino states has profound theoretical and experimental motivations
- We need an ultimate experiment to
 - Finally get rid of several long-standing anomalies OR
 - □ Discover the existence of a light sterile neutrino state → enormous consequences for our understanding of physics BSM
- We are proposing an high-luminosity experiment
 - On a short time-scale if compared to other proposals
 - Ancillary to other LBL neutrino experimental proposals
- The NESSiE spectrometers would complement a LAr target experiment
 - \square To extend p_{μ} range and to address charge separation
 - $\hfill\square$ To better assess the role of systematics in the ν_{μ} disappearance channel