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SUSY Production at the LHC
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SUSY x-sections at the LHC @ 7 TeV
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6Energy is more important than luminosity
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Figure 9: Left: ��2 = �2 � �2
min

distribution of the g-2 observable alone under the constraint that
tan� and A0 are still fixed by all other constraints. One observes a shallow increase of the
�2 value for large SUSY masses, because g-2 prefers light SUSY particles. Right: the total
��2 distribution without g-2 constraint. One observes that all points above the excluded
region (solid line) are equally probable. Note that the combined limit is slightly reduced
at large values of m0 in comparison with Fig. 8, right panel, while g-2 still contributes,
even if the errors are added linearly.

di↵erence between ⇡N scattering and lattice gauge theories has been displayed in the left panel of
Fig. 8. They display results up to m1/2 = 2500 GeV, since they find excluded regions above this
value, which is due to the relic density constraint [66]. In our case we do find good solutions and no
excluded region is found above m1/2 = 400 GeV, as shown in Fig. 10, left panel. This is probably
due to the fact that in this region tan� and A0 are highly correlated, so they can be easily missed in
randomly chosen SUSY samples. The strong correlation is shown in the right panel of Fig. 10 and
the best solutions are obtained close to the white stripes at the top and bottom, which are near the
stau co-annihilation region. In the white region the stau is the LSP. As shown in the right panel of
Fig. 10 there is no preferred region above m1/2 = 400 GeV, if g-2 is excluded and the region where
the stau becomes the LSP is ignored. The preferred minimum for g-2 (around m0 = 400,m1/2 = 200
GeV (Fig. 9 left) is already excluded by the LHC data and the slight preference above m1/2 = 400
is solely due to the shallow tail in the �2 distribution of g-2 (Fig. 9, left panel). How strong this
preference is depends then on the treatment of the errors of g-2. As argued above the theoretical
errors of the light-by-light scattering dominate and are certainly non-Gaussian, in which case a linear
addition of the experimental and theoretical errors is the more conservative approach, so we do not
think the preference by the region selected by g-2 and the corresponding preference for the expected
SUSY masses is worth emphasizing in contrast to Ref. [31].

Our results di↵er significantly from results using Markov Chain Monte Carlo sampling. E.g. in
Ref. [32] values for intermediate values of m0 are excluded, which is the region of large tan� (see
Fig. 6, left panel). Here the parameters tan� and A0 are highly correlated again (Fig. 10, right
panel) and finding the correct minimum depends strongly on the stepping algorithm, e.g. stepping in
the logarithm of a parameter is di↵erent from stepping in the parameter (”prior dependence”). Such
dependence on sampling techniques largely disappears in our multistep fitting technique, since for
each point of the m0,m1/2 grid a unique solution is found independent of the minimzer used, so the
frequentist approach with �2 minimization yields the same results as a likelihood optimization with a
Markov Chain sampling technique.

If one combines the limits from the direct searches at the LHC, heavy flavour constraints, WMAP
and XENON100 using the most conservative assumptions of linear addition of theoretical and exper-
imental errors and the lowest local relic density and matrix elements for the XENON100 limit we

10
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Relic Abundance of the DM Constraint
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Fig. 1 Left: ��2 distribution of all constraints up to m1/2 = 3000 GeV, showing that the

�2 does not increase because of the relic density for large neutralino masses in contrast to
Ref. [33]. The white cross represents �2

min

= 4.1. The white region in the top left corner is
excluded because the stau is always the LSP. The red region in this corner is excluded by
the relic density constraint requiring large tan�, which in turn cause a large mixing in the
stau sector leading to the stau becoming the LSP again. Right: contributions to the �2 of all
contraints. The contour for each contraints represents the 95% CL exclusion limit which can
be translated to an �2 contribution of 5.99 for each constraint separately.

Fig. 2 Left: Preferred region of the g-2 observable alone under the constraint that tan� and
A0 are fixed by all other constraints. Here we show the 1� band for di↵erent treatment of the
errors of g-2 which corresponds to a ��2 value below 2.3. We compare these bands with the
68% CL exclusion limit of the direct searches at the LHC, which fullfills the same �2 relation.
The quadratic addition of the errors (light green band) as well as the linear addition (dark
green band) is largely excluded by the LHC constraints. The shallow increase of the �2 value
for large SUSY masses, because g-2 prefers light SUSY particles, gives a light preference for
small SUSY masses in the overall �2 distribution. Right: Light Higgs mass distribution given
for the tan� and A0 including all data. The 114.4 GeV mass contour is directly linked to the
�2 contribution of the Higgs mass constraint.

intermediate SUSY masses to the �2 function. This is a result of the treatment of
the 95% CL limit. As shown in section 2 we get a �2 contribution of 5.99 to the
overall �2 function if the light Higgs mass is below 114.4 GeV. The contour of the
95% CL exclusion limit of the Higgs mass constraint shown in Fig.1b is therefore
directly linked to the Higgs mass distribution, which can be seen in Fig.2 right
panel.
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