J/ψ production in NRQCD: A global analysis of yield and polarization

Mathias Butenschön (Hamburg University)

In Collaboration with Bernd Kniehl

J/ψ Production with NRQCD

Factorization theorem: $\sigma_{J/\psi} = \sum_{n} \sigma_{c\overline{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle$

- *n*: Every possible Fock state, including color-octet (CO) states.
- $\sigma_{c\bar{c}[n]}$: Production rate of $c\bar{c}[n]$, calculated in perturbative QCD
- **<** $O^{J/\psi}[n]$ **>**: Long distance matrix elements (LDMEs): describe $c\bar{c}[n] \rightarrow J/\psi$, universal, extracted from experiment.

Scaling rules: LDMEs scale with definite power of $v (v^2 \approx 0.2)$:

scaling	<i>V</i> ³	v ⁷ ("CO states")	<i>V</i> ¹¹
n	³ S ₁ ^[1]	¹ S ₀ ^[8] , ³ S ₁ ^[8] , ³ P _J ^[8]	

Double expansion in v and a_s

• Leading term in v ($n = {}^{3}S_{1}^{[1]}$) equals **color-singlet model**.

Global Fit to Unpolarized Data

 $\begin{aligned} &< O[^{1}S_{0}^{[8]}] > = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3} \\ &< O[^{3}S_{1}^{[8]}] > = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3} \\ &< O[^{3}P_{0}^{[8]}] > = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5} \end{aligned}$

M. Butenschön

Global Fit to Unpolarized Data

 $<O[^{1}S_{0}^{[8]}] > = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$ $<O[^{3}S_{1}^{[8]}] > = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $<O[^{3}P_{0}^{[8]}] > = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$

M. Butenschön

J/ψ Polarization

Angular distribution of decay lepton *I*⁺ in *J/ψ* rest frame
 Polarization observables λ, μ, ν:

 $\frac{d\Gamma(J/\psi \to l^+ l^-)}{d\cos\theta \, d\phi} \propto 1 + \lambda \cos^2\theta + \mu \sin(2\theta) \cos\phi + \frac{\nu}{2} \sin^2\theta \cos(2\phi)$

- Depends on choice of coordinate system:
 - □ Helicity frame: $z \text{ axis } \| -(\vec{p}_{\gamma} + \vec{p}_{p})$
 - **Collins-Soper frame**: $z \text{ axis } \| \vec{p}_{\gamma} / |\vec{p}_{\gamma}| \vec{p}_{p} / |\vec{p}_{p}|$
 - **Target frame:** $z \operatorname{axis} \| \vec{p}_p$
- In Calculation: Plug in explicit expressions for cc[n] spin polarization vectors according to

 $\lambda = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \quad \mu = \frac{\sqrt{2}\text{Re}\,d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}, \quad \nu = \frac{2d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}$

• We use the CO LDME set with feed-down contributions subtracted.

J/ψ Polarization in Photoproduction: p_T Distribution

- Bands: Uncertainties due to scale variation and CO LDMEs.
- **CSM** predicts **longitudinal** J/ψ at high p_T .
- **CS+CO:** largely **unpolarized** J/ψ at high p_T . α_s expansion converges better.
- H1 and ZEUS data not precise enough to discriminate CSM / NRQCD.

J/ψ Polarization in Photoproduction: z Distribution

- Bands: Uncertainties due to scale variation and CO LDMEs.
- Scale uncertainties very large.
- Error bands of CSM and NRQCD largely overlap.

 p_{τ} distribution better suited to discriminate production mechanisms than z.

M. Butenschön

J/ψ Polarization in Hadroproduction

- Helicity frame: NRQCD predicts strong transverse polarization at high p_T.
- Collins-Soper frame: NRQCD predicts slightly longitudinal J/ψ .
- Disagreement with CDF Run II data, rough agreement with early ALICE data.
 Following high precision LHC data: Confirm/rule out LDME universality!

Polarization in Hadroproduction: Ma et al.

- Chao, Ma, Shao, Wang, Zhang (2012)
- Fit to CDF Tevatron J/ψ yield and polarization data with $p_T > 7$ GeV: $\langle O_8^{J/\psi}({}^1S_0) \rangle = 0.089 \text{ GeV}^3 \quad \langle O_8^{J/\psi}({}^3S_1) \rangle = 0.003 \text{ GeV}^3 \quad \langle O_8^{J/\psi}({}^3P_0) \rangle = 0.0126 \text{ GeV}^5$
- **Describes** CDF Run II polarization data and J/ψ hadroproduction yield up to highest measured p_{τ} values, not below 7 GeV.
- But: **Disagreement** with photoproduction at **HERA** and e⁺e⁻ at **BELLE**:

Bands: Two alternative LDME sets specified in Ma et al.:

 $\begin{array}{ll} \langle O_8^{J/\psi}({}^1S_0)\rangle = 0 & \langle O_8^{J/\psi}({}^3S_1)\rangle = 0.014 \ \text{GeV}^3 & \langle O_8^{J/\psi}({}^3P_0)\rangle = 0.054 \ \text{GeV}^5 \\ \langle O_8^{J/\psi}({}^1S_0)\rangle = 0.11 \ \text{GeV}^3 & \langle O_8^{J/\psi}({}^3S_1)\rangle = 0 & \langle O_8^{J/\psi}({}^3P_0)\rangle = 0 \end{array}$

M. Butenschön

Polarization in Hadroproduction: Gong et al.

- Gong, Wan, Wang, Zhang (2012)
- Fit only hadroproduction yield, but consider also ψ' and χ_{ci} contributions:
 - □ Fit χ_{c0} CO LDME to LHCb data
 - □ Fit ψ' CO LDMEs to CDF and LHCb data (p_{τ} >7 GeV)
 - □ Subtract ψ ' and χ_{cj} feddowns, fit J/ψ LDMEs to CDF and LHCb data (p_T >7 GeV):
 - $\begin{array}{ll} \langle O_8^{J/\psi}({}^1S_0)\rangle = 0.097 \; \text{GeV}^3 & \langle O_8^{J/\psi}({}^3S_1)\rangle = -0.0046 \; \text{GeV}^3 & \langle O_8^{J/\psi}({}^3P_0)\rangle = -0.0214 \; \text{GeV}^5 \\ \langle O_8^{\psi'}({}^1S_0)\rangle = -0.0001 \; \text{GeV}^3 & \langle O_8^{\psi'}({}^3S_1)\rangle = 0.0034 \; \text{GeV}^3 & \langle O_8^{\psi'}({}^3P_0)\rangle = 0.0095 \; \text{GeV}^5 \\ & \langle O_8^{\chi_0}({}^3S_1)\rangle = 0.0022 \; \text{GeV}^3 \end{array}$
- **Predict** J/ψ , ψ' and χ_{ci} **polarization** in prompt hadroproduction (first time!)
- Predicts moderate transverse J/ψ polarization, contrary to CDF Run II data
- Also: In **disagreement** with photoproduction at **HERA** and *e*⁺*e*⁻ at **BELLE**:

Overview: Three J/ ψ Production Works

M. Butenschön

Overview: Three J/w Production Works

M. Butenschön

Summary

- NRQCD provides rigorous factorization theorem for heavy quarkonium production. But: Need to proof LDME universality.
- **Combined NLO fit** of NRQCD LDMEs to inclusive J/ψ production data from ALICE, ATLAS, BELLE, CDF, CMS, DELPHI, H1, LHCb, PHENIX, ZEUS.
- Good agreement for **CS+CO** with data except perhaps for $\gamma\gamma \rightarrow J/\psi + X$.
- **CSM** predictions fall **short of data** everywhere except for $e^+e^- \rightarrow J/\psi + X$.
- Fit constrained. CO LDMEs in accordance with velocity scaling rules.
- NLO calculations of **polarized** J/ψ cross section including CO states: Direct photoproduction at HERA and hadroproduction at Tevatron and LHC.
- **CDF Tevatron** Run II data in disagreement with our NRQCD prediction, early low- p_T **ALICE** data however still in agreement.
- Two later analyses also show that e⁺e⁻, γp, pp yield and CDF Run II polarization data can not be described with same LDME set.
 Following LHC measurements: Hopefully clarify LDME universality!

BACKUP SLIDES

Calculate Inclusive J/ ψ Production within NRQCD

Factorization formulas (here hadroproduction):

Convolute partonic cross section with proton PDFs: $\sigma_{hadr} = \sum_{i,j} \int dx \, dy \, f_{i/p}(x) f_{j/p}(y) \cdot \sigma_{part,i,j}$ NRQCD factorization: $\sigma_{part,i,j} = \sum_{n} \sigma(ij \rightarrow c\overline{c}[n] + X) \cdot \langle O^{J/\Psi}[n] \rangle$

Amplitudes for *c*c[*n*] production by projector application, e.g.:

$$A_{c\overline{c}[{}^{3}S_{1}^{[1/8]}]} = \varepsilon_{\alpha}(m_{s})\operatorname{Tr}\left[C \Pi^{\alpha} A_{c\overline{c}}\right]|_{q=0}$$
$$A_{c\overline{c}[{}^{3}P_{l}^{[8]}]} = \varepsilon_{\alpha}(m_{s})\varepsilon_{\beta}(m_{l})\frac{d}{dq_{\beta}}\operatorname{Tr}\left[C \Pi^{\alpha} A_{c\overline{c}}\right]|_{q=0}$$

- $A_{c\overline{c}}$: Amputated pQCD amplitude for open $c\overline{c}$ production.
- **q**: Relative momentum between *c* and *c*. *ε*: Polarization vectors.

Overview of IR Singularity Structure

In Detail: Hadroproduction (RHIC, Tevatron)

- Color singlet model not enough to describe data (although increase from Born to NLO)
- **CS+CO** can describe data.
- ${}^{3}P_{J}^{[8]}$ short distance cross section **negative** at $p_{T} > 7$ GeV.
- But: Short distance cross sections and LDMEs unphysical
 No problem!

In Detail: Photoproduction (ZEUS HERA1)

- **Distributions:** Transverse momentum (p_T), photon-proton c.m. energy (W), and z = Fraction of photon energy going to J/ψ .
- Again: Color singlet alone **below** the data, **CS+CO** describes data well.
- Calculation includes resolved photon contributions: Important at low z.
- Good description at high z: No increase like in older Born analyses!

Hadroproduction-only Fit

Global fit to hadroproduction data alone, vary low- p_T cut:

	<i>p</i> ₇ >1 GeV	<i>p</i> ₇ > 2 GeV	<i>p</i> ₇ > 3 GeV	<i>p</i> ₇ > 5 GeV	<i>p</i> ₇ > 7 GeV
<o[<sup>1S₀^[8]]> [10⁻² GeV³]</o[<sup>	8.54 ± 0.52	16.85 ± 1.23	11.02 ± 1.67	1.68 ± 2.20	2.18 ± 2.56
<o[<sup>3S₁^[8]]> [10⁻³ GeV³]</o[<sup>	-2.66 ± 0.69	-13.36 ± 1.60	-5.56 ± 2.19	8.75 ± 2.98	10.34 ± 3.55
<o[<sup>3P₀^[8]]> [10⁻² GeV⁵]</o[<sup>	-3.63 ± 0.23	-7.70 ± 0.61	-4.46 ± 0.87	2.20 ± 1.23	3.50 ± 1.50
<i>M</i> ₀ [10 ⁻² GeV³]	2.25 ± 0.12	3.51 ± 0.19	3.29 ± 0.20	5.50 ± 0.29	8.24 ± 0.58
<i>M</i> ₁ [10 ⁻³ GeV ³]	6.37 ± 0.19	5.80 ± 0.19	5.54 ± 0.20	3.27 ± 0.29	1.63 ± 0.43

- Fit underconstrained. Therefore give two linear combinations of Ma *et al.*: $M_0 = \langle O({}^{1}S_0^{[8]}) \rangle + 3.9 \langle O({}^{3}P_0^{[8]}) \rangle / m_c^2 \qquad M_1 = \langle O({}^{3}S_1^{[8]}) \rangle - 0.56 \langle O({}^{3}P_0^{[8]}) \rangle / m_c^2$
- Fit results **depend strongly** on low- p_T cut.

Agreement with Ma et al.'s fit to Tevatron run II data with $p_T > 7$ GeV:

Default: Include feed-downs, directly fit M_0 and M_1 :	<i>M</i> ₀ = (7.4 ± 1.9) 10 ⁻² GeV ³	<i>M</i> ₁ = (0.5 ± 0.2) 10 ⁻³ GeV ³		
Ignore feed-downs, directly fit M_0 and M_1 :	M_0 = (8.92 ± 0.39) 10 ⁻² GeV ³	M_1 = (1.26 ± 0.23) 10 ⁻³ GeV ³		
Ignore feed-downs, M_0 and M_1 from 3-parameter fit:	$M_0 = (8.54 \pm 1.02) \ 10^{-2} \ \mathrm{GeV^3}$	<i>M</i> ₁ = (1.67 ± 1.05) 10 ⁻³ GeV ³		
[Ma, Wang, Chao: Table 1 of PRL 106, 042002 and Equation (18) of PRD 84, 114001				

Hadroproduction-only Fit

Global fit to hadroproduction data alone, vary low- p_T cut:

	<i>p</i> ₇ >1 GeV	<i>p</i> ₇ > 2 GeV	<i>p</i> ₇ > 3 GeV	<i>p</i> ₇ > 5 GeV	<i>p</i> ₇ > 7 GeV
<o[<sup>1S₀^[8]]> [10⁻² GeV³]</o[<sup>	8.54 ± 0.52	16.85 ± 1.23	11.02 ± 1.67	1.68 ± 2.20	2.18 ± 2.56
<o[<sup>3S₁^[8]]> [10⁻³ GeV³]</o[<sup>	-2.66 ± 0.69	-13.36 ± 1.60	-5.56 ± 2.19	8.75 ± 2.98	10.34 ± 3.55
<0[³ P ₀ ^[8]]> [10 ⁻² GeV ⁵]	-3.63 ± 0.23	-7.70 ± 0.61	-4.46 ± 0.87	2.20 ± 1.23	3.50 ± 1.50
<i>M</i> ₀ [10 ⁻² GeV ³]	2.25 ± 0.12	3.51 ± 0.19	3.29 ± 0.20	5.50 ± 0.29	8.24 ± 0.58
<i>M</i> ₁ [10 ⁻³ GeV ³]	6.37 ± 0.19	5.80 ± 0.19	5.54 ± 0.20	3.27 ± 0.29	1.63 ± 0.43

- Fit underconstrained. Therefore give two linear combinations of Ma *et al.*: $M_0 = \langle O({}^{1}S_0^{[8]}) \rangle + 3.9 \langle O({}^{3}P_0^{[8]}) \rangle / m_c^2 \qquad M_1 = \langle O({}^{3}S_1^{[8]}) \rangle - 0.56 \langle O({}^{3}P_0^{[8]}) \rangle / m_c^2$
- Fit results **depend strongly** on low- p_T cut.

Agreement with Ma et al.'s fit to Tevatron run II data with $p_T > 7$ GeV:

Default: Include feed-downs, directly fit M_0 and M_1 :	<i>M</i> ₀ = (7.4 ± 1.9) 10 ⁻² GeV ³	<i>M</i> ₁ = (0.5 ± 0.2) 10 ⁻³ GeV ³		
Ignore feed-downs, directly fit M_0 and M_1 :	$M_0 = (8.92 \pm 0.39) \ 10^{-2} \ \mathrm{GeV^3}$	<i>M</i> ₁ = (1.26 ± 0.23) 10 ⁻³ GeV ³		
Ignore feed-downs, M_0 and M_1 from 3-parameter fit:	<i>M</i> ₀ = (8.54 ± 1.02) 10 ⁻² GeV ³	<i>M</i> ₁ = (1.67 ± 1.05) 10 ⁻³ GeV ³		
[Ma, Wang, Chao: Table 1 of PRL 106, 042002 and Equation (18) of PRD 84, 114001				

Global Fit: Dependence on Low- p_T Cuts (1)

Global fit: Vary low- p_T cut on hadroproduction data:

hadroproduction data left	<pre>p_T > 1 GeV 148 points</pre>	<pre>p_T > 2 GeV 134 points</pre>	<pre>p_T > 3 GeV 119 points</pre>	p ₇ > 5 GeV 86 points	p ₇ > 7 GeV 60 points	
<o[<sup>1S₀^[8]]> [10⁻² GeV³]</o[<sup>	5.68 ± 0.37	4.25 ± 0.43	4.97 ± 0.44	4.92 ± 0.49	3.91 ± 0.51	
<o[<sup>3S₁^[8]]> [10⁻³ GeV³]</o[<sup>	0.90 ± 0.50	2.94 ± 0.58	2.24 ± 0.59	2.23 ± 0.62	2.96 ± 0.64	
<o[<sup>3P₀^[8]]> [10⁻² GeV⁵]</o[<sup>	-2.23 ± 0.17	-1.38 ± 0.20	-1.61 ± 0.20	-1.59 ± 0.22	-1.16 ± 0.23	
<i>M</i> ₀ [10 ⁻² GeV ³]	1.81 ± 0.09	1.85 ± 0.09	2.18 ± 0.10	2.17 ± 0.12	1.89 ± 0.12	
<i>M</i> ₁ [10 ⁻³ GeV ³]	6.46 ± 0.17	6.37 ± 0.17	6.25 ± 0.17	6.18 ± 0.17	5.86 ± 0.18	
			1			
	Our default fit					

- **Stabilizing** influence of **photoproduction** data.
- Fit **constrained** enough: Can now extract 3 CO LDMEs.
- Fit results now **almost independent** of low- p_T cut.
- Fit less stable with low- p_T cut below 2 GeV (nonperturbative effects).

Global Fit: Dependence on Low- p_T Cuts (2)

Global fit: Vary low- p_T cut on photoproduction (including $\gamma\gamma$ -scattering):

photoproduction data left	<i>p_T</i> > 1 GeV 74 points	p ₇ > 2 GeV 30 points	p ₇ > 3 GeV 15 points	<i>p</i> ₇ > 5 GeV 5 points	<i>p_T</i> > 7 GeV 1 point
<o[<sup>1S₀^[8]]> [10⁻² GeV³]</o[<sup>	4.97 ± 0.44	5.10 ± 0.92	4.05 ± 1.17	5.44 ± 1.27	9.56 ± 1.59
<o[<sup>3S₁^[8]]> [10⁻³ GeV³]</o[<sup>	2.24 ± 0.59	2.11 ± 1.22	3.52 ± 1.56	1.73 ± 1.68	-3.66 ± 2.09
<o[<sup>3P₀^[8]]> [10⁻² GeV⁵]</o[<sup>	-1.61 ± 0.20	-1.58 ± 0.48	-0.97 ± 0.63	-1.63 ± 0.68	-3.73 ± 0.83
<i>M</i> ₀ [10 ⁻² GeV ³]	2.18 ± 0.10	2.36 ± 0.12	2.37 ± 0.13	2.62 ± 0.15	3.10 ± 0.19
<i>M</i> ₁ [10 ⁻³ GeV ³]	6.25 ± 0.17	6.05 ± 0.18	5.94 ± 0.19	5.78 ± 0.20	5.62 ± 0.20
	↑ Our default fit				

- **Fit stable** against varying low- p_T cut in region 1 GeV ~ 3 GeV.
- Just 5 or 1 photoproduction against 119 hadroproduction points not enough to stabilize the fit. Not stable with low- p_T cut much larger than 3 GeV. (Would need more high- p_T photoproduction data.)

Polarization in Hadroproduction: Contributions

First: Sum up contributions of intermediate states:

