The MICE Beam Line Instrumentation (Trackers and PID) for precise Emittance Measurement

ICHEP 2012
Melbourne, 7 July 2012

Paul Soler
on behalf of the MICE Collaboration
1. Motivation for MICE: Neutrino Factory and Muon Collider
2. MICE aims
3. Ionization cooling
4. MICE beam line
5. MICE detectors: TOF, Cherenkov, Calorimeters (KL and EMR) and tracker
6. Preliminary detector performance
7. Conclusions
New baseline Neutrino Factory for high θ_{13}: 10 GeV/c muon storage ring

4D muon ionization cooling essential for 10^{21} μ/year

Study II cooling cell

International Design Study for a Neutrino Factory
Interim Design Report
IDS-NF-020

P. Soler, ICHEP12, Melbourne, 7 July 2012
Neutrino Factory

- Neutrino Factory optimisation depends on value of θ_{13}
- At $\sin^2 2\theta_{13} \sim 0.1$ optimum is ~ 10 GeV NF with ~ 2000 km baseline
- Neutrino Factory offers best sensitivity and smallest $\Delta\delta_{CP} \sim 5^\circ$ out of all future facilities

P. Soler, ICHEP12, Melbourne, 7 July 2012
Cooling essential to deliver Neutrino Factory performance

Emittance: $18 \text{ mm rad} \rightarrow 7.5 \text{ mm rad}$
Muon yield: $0.08 \mu/\text{p.o.t.} \rightarrow 0.19 \mu/\text{p.o.t.}$

Increase in performance: 2.4
At the energy frontier, a multi-TeV muon collider fits inside most major laboratories, has better energy resolution than e^+e^- linear colliders and has enhanced coupling to the Higgs.

- A Muon Collider requires 6D ionization cooling
- A Neutrino Factory is the first step towards a Muon Collider
The Muon Ionization Cooling Experiment (MICE) is a UNIQUE facility at RAL to measure muon ionization cooling in a cell of the NF Study II design.

Absorbers: liquid hydrogen and other low Z absorbers (LiH).

The aim of MICE is to measure ~10% emittance reduction (cooling) from 140-240 MeV/c muons with 1% precision: \(\frac{\Delta \varepsilon}{\varepsilon_{in}} = 10^{-3} \)

See talk Ken Long at Accelerator session
International Muon Ionization Cooling Experiment (MICE): Belgium, Bulgaria, China, Holland, Italy, Japan, Switzerland, UK, USA based at Rutherford Appleton Laboratory (UK): ~150 collaborators
Goals of MICE:
- design, engineer, and build a section of cooling channel
- measure performance under different beam conditions
- show that design tools (simulation codes) agree with experiment
- demonstrate operation LH$_2$ close to high gradient RF in high B fields

Principle

1. Ionization:
 \[\frac{d\varepsilon}{dz} \approx -\frac{\varepsilon}{E_\mu \beta^2} \frac{dE_\mu}{dz} \]

2. Multiple scattering:
 \[\frac{\beta_{\perp}}{2m\beta^3} \frac{(13.6\text{MeV})^2}{E_\mu X_0} \]

Practice

Ionization: cooling term
Multiple scattering: heating term
Implementation in Steps

STEP I

COMPLETED

STEP IV

2013

STEP VI

Aim: 2016
MICE beam and instrumentation fully constructed and operational
MICE beam detectors

- MICE: single particle spectrometer
- Particle Identification:
 - Time of flight counters (TOF0,1,2)
 - Two aerogel threshold Cherenkov counters (CKOV)
 - MICE Calorimeters: purity >99.9%
 - Kloe-light (KL) lead-scintillating fibre preshower
 - Electron-Muon Ranger: 1 m³ of extruded scintillator bars

Beamline under construction
Time-of-Flight

- Time-of-flight system:
 - X/Y scintillator hodoscopes
 - TOF0: $\sigma_t = 51$ ps
 - TOF1: $\sigma_t = 53$ ps*
 - TOF2: $\sigma_t = 52$ ps
 - Magnetic field: $B_{||} \sim 200 - 300$ G
 \[B_{\perp} \sim 1 \text{kG} \]
 - CAEN V1724 FADC
 - CAEN V1290 TDC

* Faulty PMTs giving 58 ps for TOF1 were recently replaced
Cherenkov

- Two threshold Cherenkov counters:
 - Aerogel radiators
 - CKOVa: $n_a = 1.07$
 - CKOVb: $n_b = 1.12$

Preliminary CKOV performance
KL Preshower

Calorimeters:

- KLOE-light (KL): lead extrusion with extruded scintillating fibres as in KLOE calorimeter but with lighter Pb to fibre ratio.
- Performs electron-muon separation for 0.5% of muons that decay – requires electron rejection at 0.1% level.

Assembly TOF2-KL

Performance KL vs TOF

P. Soler, ICHEP12, Melbourne, 7 July 2012
Electron Muon Ranger

- MICE EMR:
 - Electron-muon ranger: 1 m3 extruded scintillator bars with WLS fibre
 - 24 X/Y modules (48 planes) with 59 bars/plane: 2832 bars
 - Electrons give EM showers and muons give tracks
 - dE/dx also used to separate electrons from muons (constant energy loss)

- Prototype tested at RAL
- Full detector under construction for STEP IV
MICE Tracker

- Scintillating fibre tracker:
 - Performs emittance measurement: x, x', y, y'
 - 350 μm scintillating fibre doublet layers
 - Two trackers: 5 stations per tracker, 3 planes per station
 - Inside 4 T superconducting solenoid
 - Trackers built, solenoids being commissioned

Resolution: 661 μm (including MS)

Yield: ~11 PE
Efficiency = 99.8%
Read out by VLPC 80% QE
MICE reconstruction

- Instrumentation used in physics analyses for Step I:
 - Measured nine elements of (ε, p) matrix for positive and negative particles
 $(\varepsilon = 3, 6, 10 \text{ mm rad}; p = 140, 200, 240 \text{ MeV/c})$

- MICE Step I completed: beam line paper completed
 - The Beam Line and Instrumentation of the Muon Ionization Cooling Experiment at ISIS
 JINST 7 (2012) P05009

![Histograms](image)
Physics analyses for Step I:
- Developed novel method to measure emittance using TOF detectors
Conclusions

- MICE aims to perform the first measurement of ionization cooling
- MICE is a unique contribution to the Neutrino Factory and Muon Collider R&D activities
- MICE detectors constructed and commissioned: TOF system (TOF0,1,2), two CKOVs and KL
- EMR is currently under construction
- Trackers completed but need to be integrated with tracker solenoids
- MICE Step I has been successfully delivered
- Preparations for MICE Steps IV and VI well underway.