Quarkonium production in the LHC era:
QCD corrections and new observables

J.P. Lansberg
IPN Orsay – Paris-Sud U. –CNRS/IN2P3
July 7, 2012 – ICHEP 2012 – Melbourne, Australia
Part I

QCD corrections in the CSM and the P_T spectrum
Reminder: QCD corrections for \(\Upsilon \) at the Tevatron
Reminder: QCD corrections for Υ at the Tevatron

QCD corrections and new observables
July 7, 2012 3 / 15
Reminder: QCD corrections for Υ at the Tevatron

Reminder: QCD corrections for Υ at the Tevatron

$\Upsilon (1S)$ prompt data $\times F_{\text{direct}}$

LO
NLO
NNLO
NNLO*

$\alpha_3^3P_T^{--8}$

$\alpha_4^4P_T^{--6}$

$\alpha_5^5P_T^{--4}$

+ double t-channel gluon exchange at α_5^5

Attention: the NNLO* is not a complete NNLO

ψ or Υ

α_3^3
P_T^{--8}

α_4^4
P_T^{--6}

α_5^5
P_T^{--4}
QCD corrections for Υ at the Tevatron & the LHC

$\Upsilon(3S)$ (GeV/c) Υ of T_p

$[\text{nb/(GeV/c)}]$ $T_p/\sigma_3 S \times B_3 S$

10^3 10^4 10^5 10^6

$LHCb$ $\sqrt{s} = 7 \text{ TeV}$

p_T of $\Upsilon(3S)$ (GeV/c)

10^{-1} 10^{-2} 10^{-3} 10^{-4}

LHCb data $(2.0 < y < 4.5)$
Direct NNLO* CSM $(2.0 < y < 4.5)$
Direct NLO CSM $(2.0 < y < 4.5)$

$\Upsilon(3S)$: 100 % direct; $\Upsilon(2S)$: 60-70 % direct; $\Upsilon(1S)$: 50 % direct
QCD corrections for Υ at the Tevatron & the LHC

$LHCb$ data (2.0 <y < 4.5)
LHCb data (2.0 <y < 4.5)
direct NNLO* CSM (2.0 <y < 4.5)
direct NLO CSM (2.0 <y < 4.5)

ψ or Υ

$\alpha_3^3 P_T^{-8}$

$\alpha_4^4 P_T^{-6}$

$\alpha_5^5 P_T^{-4}$

$\Upsilon(3S)$: 100% direct; $\Upsilon(2S)$: 60-70% direct; $\Upsilon(1S)$: 50% direct.
QCD corrections for Υ at the Tevatron & the LHC

Υ $(3S)$: 100% direct; $\Upsilon(2S)$: 60-70% direct; $\Upsilon(1S)$: 50% direct.
QCD corrections for Υ at the Tevatron & the LHC

CMS, Talk by K. Yi/K. Ulmer on Thursday, CMS-BPH11001

ψ or Υ

$\alpha_3^3 S P^{-8}$

$\Upsilon(1S)$

$|y| < 2$

CMS Preliminary

$\sqrt{s} = 7$ TeV, $L = 36$ pb$^{-1}$

$\frac{d^2 \sigma}{dp_T^2} \times B(\mu)$

CSM theory curve extrapolated to prompt: $\times 2$
Part II

P_T integrated yields
CSM predictions account for the P_T-integrated yield

→ The yield vs. \sqrt{s}, y

\footnote{NLO not stable at large \sqrt{s} (small x) and small P_T}

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010)

(Here only LO curves1)
CSM predictions account for the P_T-integrated yield

The yield vs. \sqrt{s}, y

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q^2, ...
- Good agreement with RHIC, Tevatron and LHC data (multiplied by a constant F_{direct})

1NLO not stable at large \sqrt{s} (small x) and small P_T

© The yield vs. \sqrt{s}, y

(here only LO curves1)
CSM predictions account for the P_T-integrated yield

→ The yield vs. \sqrt{s}, y

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q^2, ...
- Good agreement with RHIC, Tevatron and LHC data (multiplied by a constant F_{direct})

$F_{J/\psi}^{direct} = 59 \pm 10\%$

LO gg CSM

PHENIX / CDF /Prelim. ALICE data

\sqrt{s} (TeV)

1 NLO not stable at large \sqrt{s} (small x) and small P_T
CSM predictions account for the P_T-integrated yield

→ The yield vs. \sqrt{s}, y

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q^2, ...
- Good agreement with RHIC, Tevatron and LHC data (multiplied by a constant F^{direct})

\[F^{direct}_{\Upsilon(1S)} = 51\pm12\% \]

LO gg CSM

STAR/CDF/CMS data

\[\frac{d\sigma^{\Upsilon(1S)}_{direct}}{dy} \times Br \] (pb)

\[\frac{d\sigma^{\Upsilon(1S)}_{direct}}{dy} \times Br \] (nb)

NLO not stable at large \sqrt{s} (small x) and small P_T
Cross section ratio at LO

- Despite the uncertainties, CSM predictions are parameter free!
Cross section ratio at LO

- Despite theoretical uncertainties, CSM predictions are parameter free!
- At LO in v^2, one *de facto* predicts direct cross-section ratios

\[\frac{\sigma(\text{direct } \Upsilon(3S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi_{3S}(0)|^2}{|\psi_{1S}(0)|^2} \sim 0.34 \]

\[\frac{\sigma(\text{direct } \Upsilon(2S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi_{2S}(0)|^2}{|\psi_{1S}(0)|^2} \sim 0.45 \]

\[\text{Br}_{\ell\ell} \simeq 7.4 \text{ nb} \]

\[\text{Br}_{\ell\ell} \simeq 1.0 \text{ nb} \]

Extrapolated $3S$ direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$

$\Upsilon(3S)$ yield likely not 100% direct

JT Lansberg (IPNO)
Cross section ratio at LO

- Despite theoretical uncertainties, CSM predictions are parameter free!
- At LO in v^2, one de facto predicts direct cross-section ratios
- Simple ratios of Schrödinger wave function at the origin:
 $$\frac{\sigma(\text{direct } \Upsilon(3S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^3S(0)|^2}{|\psi^1S(0)|^2} \sim 0.34$$
 $$\frac{\sigma(\text{direct } \Upsilon(2S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^2S(0)|^2}{|\psi^1S(0)|^2} \sim 0.45$$
Despite th. uncertainties, CSM predictions are parameter free!

At LO in v^2, one de facto predicts direct cross-section ratios:

Simple ratios of Schrödinger wave function at the origin:

$$\frac{\sigma(\text{direct } \Upsilon(3S))}{\sigma(\text{direct } \Upsilon(1S))} = \left| \frac{\psi^{3S}(0)}{\psi^{1S}(0)} \right|^2 \sim 0.34$$

$$\frac{\sigma(\text{direct } \Upsilon(2S))}{\sigma(\text{direct } \Upsilon(1S))} = \left| \frac{\psi^{2S}(0)}{\psi^{1S}(0)} \right|^2 \sim 0.45$$

$$\sigma(\Upsilon(1S)(|y| < 2)) Br_{\ell\ell} \sim 7.4 \text{ nb} \xrightarrow{50\% \text{ direct}} \sigma(\text{direct } \Upsilon(1S)) \sim 150 \text{ nb}$$

CMS, PRD 83, 112004 (2011)
Cross section ratio at LO

- Despite th. uncertainties, CSM predictions are parameter free!
- At LO in v^2, one de facto predicts direct cross-section ratios
- Simple ratios of Schrödinger wave function at the origin:

$$\frac{\sigma(\text{direct } \Upsilon(3S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34$$

$$\frac{\sigma(\text{direct } \Upsilon(2S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45$$

- $\sigma(\Upsilon(1S)(|y| < 2)) Br_{\ell\ell} \sim 7.4 \text{ nb} \xrightarrow{50\%_\text{direct}} \sigma(\text{direct } \Upsilon(1S)) \sim 150 \text{ nb}$

- Extrapolated 3S direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$
Cross section ratio at LO

- Despite th. uncertainties, CSM predictions are parameter free!
- At LO in v^2, one \textit{de facto} predicts direct cross-section ratios
- Simple ratios of Schrödinger wave function at the origin:
 \[
 \frac{\sigma(\text{direct } \Upsilon(3S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34
 \]
 \[
 \frac{\sigma(\text{direct } \Upsilon(2S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45
 \]

- $\sigma(\Upsilon(1S)(|y| < 2)) Br_{\ell\ell} \sim 7.4 \text{ nb}$ \(50\%\) direct $\rightarrow \sigma(\text{direct } \Upsilon(1S)) \sim 150 \text{ nb}$
- Extrapolated $3S$ direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$
- $\sigma(\Upsilon(3S)(|y| < 2)) Br_{\ell\ell} \sim 1.0 \text{ nb}$ \(100\%\) direct $\rightarrow \sigma(\text{direct } \Upsilon(3S)) \sim 45 \text{ nb}$

CMS, PRD 83, 112004 (2011)
Cross section ratio at LO

- Despite th. uncertainties, CSM predictions are parameter free!
- At LO in v^2, one *de facto* predicts direct cross-section ratios
- Simple ratios of Schrödinger wave function at the origin:
 \[
 \frac{\sigma(\text{direct } \Upsilon(3S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34
 \]
 \[
 \frac{\sigma(\text{direct } \Upsilon(2S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45
 \]
- $\sigma(\Upsilon(1S)(|y| < 2)) \text{ Br}_{\ell\ell} \sim 7.4 \text{ nb} \quad \text{50% direct} \quad \sigma(\text{direct } \Upsilon(1S)) \sim 150 \text{ nb}

CMS, PRD 83, 112004 (2011)

- Extrapolated 3S direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$
- $\sigma(\Upsilon(3S)(|y| < 2)) \text{ Br}_{\ell\ell} \sim 1.0 \text{ nb} \quad \text{100% direct} \quad \sigma(\text{direct } \Upsilon(3S)) \sim 45 \text{ nb}$

CMS, PRD 83, 112004 (2011)

- **NEW**: the 3S yield likely not 100% direct
 - cf. $\chi_b(3P)$ observation by ATLAS

Cross section ratio at LO

- Despite th. uncertainties, CSM predictions are parameter free!
- At LO in v^2, one *de facto* predicts direct cross-section ratios
- Simple ratios of Schrödinger wave function at the origin:

$$\frac{\sigma(\text{direct } \Upsilon(3S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34$$

$$\frac{\sigma(\text{direct } \Upsilon(2S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45$$

- $\sigma(\Upsilon(1S)(|y| < 2)) BR_{\ell \ell} \simeq 7.4$ nb $^{50\% \text{direct}} \rightarrow \sigma(\text{direct } \Upsilon(1S)) \sim 150$ nb
- Extrapolated $3S$ direct yield: 0.34×150 nb ~ 50 nb
- $\sigma(\Upsilon(3S)(|y| < 2)) BR_{\ell \ell} \simeq 1.0$ nb $^{100\% \text{direct}} \rightarrow \sigma(\text{direct } \Upsilon(3S)) \sim 45$ nb
- **NEW**: the $3S$ yield likely not 100% direct
 - cf. $\chi_b(3P)$ observation by ATLAS
- P_T dependence of cross section ratios:
Cross section ratio at LO

- Despite th. uncertainties, CSM predictions are parameter free!
- At LO in v^2, one *de facto* predicts direct cross-section ratios
- Simple ratios of Schrödinger wave function at the origin:

$$\frac{\sigma(\text{direct } \Upsilon(3S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34$$

$$\frac{\sigma(\text{direct } \Upsilon(2S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45$$

- $\sigma(\Upsilon(1S)(|y| < 2)) \text{Br}_{\ell\ell} \simeq 7.4 \text{ nb} \quad 50\% \text{direct}$
- $\sigma(\Upsilon(3S)(|y| < 2)) \text{Br}_{\ell\ell} \simeq 1.0 \text{ nb} \quad 100\% \text{direct}$

- Extrapolated 3S direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$
- NEW: the 3S yield likely not 100% direct

 cf. $\chi_b(3P)$ observation by ATLAS

- P_T dependence of cross section ratios:
- Mass effects at low P_T: not incoded in the v^2 results: $M_{\Upsilon(nS)}^{\text{NRQCD}} = 2m_b$
Cross section ratio at LO

- Despite th. uncertainties, CSM predictions are parameter free!
- At LO in \(v^2 \), one \textit{de facto} predicts direct cross-section ratios
- Simple ratios of Schrödinger wave function at the origin:

\[
\frac{\sigma(\text{direct } \Upsilon(3S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \approx 0.34 \quad \frac{\sigma(\text{direct } \Upsilon(2S))}{\sigma(\text{direct } \Upsilon(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \approx 0.45
\]

\[
\sigma(\Upsilon(1S)(|y| < 2)) Br_{\ell\ell} \approx 7.4 \text{ nb} \quad \overset{50\% \text{direct}}{\longrightarrow} \quad \sigma(\text{direct } \Upsilon(1S)) \approx 150 \text{ nb}
\]

Extrapolated 3S direct yield: \(0.34 \times 150 \text{ nb} \approx 50 \text{ nb} \)

\[
\sigma(\Upsilon(3S)(|y| < 2)) Br_{\ell\ell} \approx 1.0 \text{ nb} \quad \overset{100\% \text{direct}}{\longrightarrow} \quad \sigma(\text{direct } \Upsilon(3S)) \approx 45 \text{ nb}
\]

NEW: the 3S yield likely not 100% direct

cf. \(\chi_b(3P) \) observation by ATLAS

\[CMS, PRD 83, 112004 (2011) \]

\(P_T \) dependence of cross section ratios:
- Mass effects at low \(P_T \): not incoded in the \(v^2 \) results: \(M^{\Upsilon(nS)}_{\text{NRQCD}} = 2m_b \)
- Feed-down: simple kinematical effect: \(P_T^{\text{daughter}} \sim \frac{M^{\text{daughter}}_{\text{NRQCD}}}{P_T^{\text{mother}}} \cdot P_T^{\text{mother}} \)
Cross section ratio at LO

- Despite the uncertainties, CSM predictions are parameter free!
- At LO in v^2, one *de facto* predicts direct cross-section ratios
- Simple ratios of Schrödinger wave function at the origin:

$$\frac{\sigma(\text{direct } Y(3S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34$$

$$\frac{\sigma(\text{direct } Y(2S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45$$

- \(\sigma(Y(1S)(|y| < 2)) Br_{\ell\ell} \sim 7.4 \text{ nb} \) \(50\%\text{direct}\) \(\rightarrow\) \(\sigma(\text{direct } Y(1S)) \sim 150 \text{ nb}\) CMS, PRD 83, 112004 (2011)

- Extrapolated 3S direct yield: \(0.34 \times 150 \text{ nb} \sim 50 \text{ nb}\)

- \(\sigma(Y(3S)(|y| < 2)) Br_{\ell\ell} \sim 1.0 \text{ nb} \) \(100\%\text{direct}\) \(\rightarrow\) \(\sigma(\text{direct } Y(3S)) \sim 45 \text{ nb}\) CMS, PRD 83, 112004 (2011)

- **NEW**: the 3S yield likely not 100% direct

- \(P_T\) dependence of cross section ratios:
 - Mass effects at low \(P_T\): not encoded in the \(v^2\) results: \(M_{NRQCD}^{Y(nS)} = 2m_b\)
 - Feed-down: simple kinematical effect: \(P_T^{\text{daughter}} \sim \frac{M_{daughter}}{M_{mother}} P_T^{\text{mother}}\)
 - Harmless if \(\frac{d\sigma}{dP_T} \propto P_T^{-n}\) with \(n\) fixed, not if \(n\) changes, esp. true at low \(P_T\)
Colour Octet Dominance is challenged for low/mid $P_T J/\psi$ in pp.

- No need of CO contributions at low P_T: see slides on yields.

No evidence of CO contributions at low P_T. See slides on yields.
Colour Octet Dominance is challenged for low/mid P_T J/ψ in pp

- No need of CO contributions at low P_T: see slides on yields
- Strong constraints from the e^+e^- analyses
Colour Octet Dominance is challenged for low/mid P_T J/ψ in pp

- No need of CO contributions at low P_T: see slides on yields
- Strong constraints from the e^+e^- analyses
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X_{\text{non } cc} > 2\text{ch.tr.} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$
Colour Octet Dominance is challenged for low/mid P_T J/ψ in pp

- No need of CO contributions at low P_T: see slides on yields

- Strong constraints from the $e^+ e^-$ analyses
 - Recent Belle update of $e^+ e^- \rightarrow J/\psi + X_{non \text{ cc}}^{>2\text{ch.tr.}} = 0.43 \pm 0.09 \pm 0.09$ pb
 - $e^+ e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr.: 0.4-0.7 pb

 no space for CO (1S_0 or 3P_J) in B-factory data

Colour Octet Dominance is challenged for low/mid P_T J/ψ in pp

- No need of CO contributions at low P_T: see slides on yields
- Strong constraints from the e^+e^- analyses
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X_{\text{non } cc}^{2\text{ch.tr.}} = 0.43 \pm 0.09 \pm 0.09$ pb
 - $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb
 - no space for CO (1S_0 or 3P_J) in B-factory data
 - $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron
 - IF one ignores the CSM: upper bound on CO
 $$\langle 0|\mathcal{O}^{J/\psi}[^1S_0^8]|0\rangle + 4.0 \langle 0|\mathcal{O}^{J/\psi}[^3P_0^8]|0\rangle / m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \text{ GeV}^3$$

Impact of χ_c's and χ_b's

The most important and overlooked theory paper on quarkonium physics in 2010!

LHCb, arXiv:1204.1462
Impact of χ_c’s and χ_b’s

The most important and overlooked theory paper on quarkonium physics in 2010!

LHCb, arXiv:1204.1462

LHCb: first indication that the χ_c fraction increases
Note: NLO NRQCD does not necessarily mean “Colour Octet dominance”
At NLO, the Colour-Singlet and Colour-Octet transition yields depend –for the P waves– on the unphysical scale Λ_{NRQCD} and the NRQCD subtraction scheme
Impact of χ_c’s and χ_b’s

LHCb: first indication that the χ_c fraction increases
Note: NLO NRQCD does not necessarily mean “Colour Octet dominance”
At NLO, the Colour-Singlet and Colour-Octet transition yields depend –for the P waves– on the unphysical scale Λ_{NRQCD} and the NRQCD subtraction scheme

About 40 % of $\Upsilon(1S)$ are from χ_b

The most important and overlooked theory paper on quarkonium physics in 2010!

LHCb, arXiv:1204.1462

Impact of χ_c's and χ_b's

The most important and overlooked theory paper on quarkonium physics in 2010!

LHCb, arXiv:1204.1462

- LHCb: first indication that the χ_c fraction increases
 Note: NLO NRQCD does not necessarily mean “Colour Octet dominance”
 At NLO, the Colour-Singlet and Colour-Octet transition yields depend –for the P waves– on the unphysical scale Λ_{NRQCD} and the NRQCD subtraction scheme

- About 40 % of $\Upsilon(1S)$ are from χ_b

- No information about the P_T dependence of the χ_b fraction

Part III

QCD corrections and polarisation
QCD corrections, feed-down and polarisation

\[
\alpha = \frac{\sigma_T - 2 \sigma_L}{\sigma_T + 2 \sigma_L}
\]

P_T (GeV)

LO \quad \Upsilon + bb \quad NLO \quad NNLO

©

Polarisation from \chi^Q

Feed-down unknown at NLO:

If \chi^Q \rightarrow 3S_1 \gamma is E1:

\(\alpha_{\max}\) from \chi^Q = +1.

\(\alpha_{\min}\) from \chi^Q = -0.45 for all P_T, any n.

F_{\Upsilon(1S)} = 0.1 for all P_T.

F_{\Upsilon(1S)}_{\text{direct}} = 0.5, F_{\Upsilon(2S)}_{\text{direct}} = 0.7 for all P_T.

old CDF data

NNLO # prompt
NLO prompt

J.P. Lansberg (IPNO)
QCD corrections, feed-down and polarisation

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

\[\alpha = \frac{\sigma_T - 2 \sigma_L}{\sigma_T + 2 \sigma_L} \]

\(P_T \) (GeV)

For the \(\Upsilon \):

- \(\Upsilon(1S) \):
 - \(F_{\Upsilon (1S)} \) direct = 0.5
 - \(F_{\Upsilon (2S)} \) direct = 0.7

For the \(\Upsilon(2S) \):

- \(F_{\Upsilon (2S)} \) prompt = 0.1 for all \(P_T \)

- \(\alpha_{\max} \) from \(\chi\) (nP) = +1 for all \(P_T \), any n

- \(\alpha_{\min} \) from \(\chi\) (nP) = -0.45 for all \(P_T \), any n

old CDF data

NNLO # prompt

NLO prompt

LO

NLO

NNLO*

Direct \(\psi(2S) \) CDF data at \(s^{1/2} = 1.96 \) TeV

Prompt \(J/\psi \) CDF data at \(s^{1/2} = 1.96 \) TeV

NLO direct

NNLO # direct

NLO prompt

NNLO # direct

J.P. Lansberg (IPNO)
QCD corrections, feed-down and polarisation

→ **Complete modification of the CSM polarisation at NLO (also at NNLO*)**

→ **Polarisation from \(\chi_Q \)** Feed-down **unknown at NLO:**
QCD corrections, feed-down and polarisation

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

→ Polarisation from χ_Q Feed-down unknown at NLO:
- If $\chi_Q \rightarrow ^3 S_1 \gamma$ is E1: $\alpha_{from\chi_Q}^{max} = +1.00$ and $\alpha_{from\chi_Q}^{min} = -0.45$
QCD corrections, feed-down and polarisation

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

→ Polarisation from χ_Q Feed-down unknown at NLO:
 - If $\chi_Q \rightarrow ^3 S_1 \gamma$ is E1: $\alpha_{\chi_Q}^{max} = +1.00$ and $\alpha_{\chi_Q}^{min} = -0.45$
 - For the J/ψ:

J.P. Lansberg (IPNO)
QCD corrections, feed-down and polarisation

→ Complete modification of the CSM polarisation at NLO (also at NNLO*).

→ Polarisation from χ_Q Feed-down unknown at NLO:
 - If $\chi_Q \to ^3S_1 \gamma$ is $E1$: $\alpha_{\text{max}}^{\chi_Q} = +1.00$ and $\alpha_{\text{min}}^{\chi_Q} = -0.45$
 - For the J/ψ:

J.P. Lansberg (IPNO)

J.P. Lansberg, Preliminary

© Prompt J/ψ CDF data at $s^{1/2} = 1.96$ TeV
NLO direct
NNLO* direct

© Prompt J/ψ CDF data at $s^{1/2} = 1.96$ TeV
LO
NLO
NNLO

© For the Υ($1S$):

$F_{\Upsilon}(1S)$ direct = 0.5, $F_{\Upsilon}(2S)$ direct = 0.7 for all P_T.
QCD corrections, feed-down and polarisation

Complete modification of the CSM polarisation at NLO (also at NNLO*)

Polarisation from χ_Q Feed-down unknown at NLO:
- If $\chi_Q \rightarrow ^3 S_1 \gamma$ is E1: $\alpha_{\text{max}}^{\chi_Q} = +1.00$ and $\alpha_{\text{min}}^{\chi_Q} = -0.45$
- For the J/ψ:

For the $\Upsilon(1S)$:

J.P. Lansberg, Preliminary

Prompt J/ψ CDF data at $s^{1/2} = 1.96$ TeV

NLO prompt

NNLO* prompt

→ QCD corrections and new observables

July 7, 2012 10 / 15
Is the CO yield transverse or unpolarised at large P_T?

- M. Buttenschön & B. Kniehl

PRL 108:172002, 2012
Is the CO yield transverse or unpolarised at large P_T?

- M. Buttenschön & B. Kniehl
 - Global fit: pp, ep, $\gamma\gamma$, e^+e^- (w/o rel. corr.)
 - Keep the transverse polarisation for the CO yield
 - OK with ALICE, KO with CDF

PRL 108:172002, 2012
Is the CO yield transverse or unpolarised at large P_T?

- M. Buttenschön & B. Kniehl
 - Global fit: pp, ep, $\gamma\gamma$, e^+e^- (w/o rel. corr.)
 - Keep the transverse polarisation for the CO yield
 - OK with ALICE, KO with CDF

PRL 108:172002, 2012

Global fit: pp, ep, $\gamma\gamma$, e^+e^- (w/o rel. corr.)

Keep the transverse polarisation for the CO yield

OK with ALICE, KO with CDF

These studies do not include χ_c feed-down...
Is the CO yield transverse or unpolarised at large P_T?

- M. Buttenschön & B. Kniehl
 - Global fit: pp, ep, $\gamma \gamma$, $e^+ e^-$ (w/o rel. corr.)
 - Keep the transverse polarisation for the CO yield
 - OK with ALICE, KO with CDF

- K.T. Chao, et al.
Is the CO yield transverse or unpolarised at large P_T?

- M. Buttenschön & B. Kniehl
 - Global fit: pp, ep, $\gamma\gamma$, e^+e^- (w/o rel. corr.)
 - Keep the transverse polarisation for the CO yield
 - OK with ALICE, KO with CDF

- K.T. Chao, et al.
 - Less global fit with focus on high P_T pp data

Figure 4: Predictions for the ATLAS measurement [29]. Note that these data are not part of our global fit, since they became public after our global fit was finished. The bands are again constructed by variation of the renormalization, factorization and NRQCD scales. At very high p_T, it will be necessary to resum large logarithms $\log(p_T^2/M_{J/\Psi}^2)$. For instance, at $p_T = 40$ GeV, $\alpha_s \log(p_T^2/M_{J/\Psi}^2) \approx 0.7$.

$\sqrt{s} = 7$ TeV
$|y_{J/\Psi}| < 0.75$
Is the CO yield transverse or unpolarised at large P_T?

- **M. Buttenschön & B. Kniehl**
 - Global fit: pp, ep, $\gamma\gamma$, e^+e^- (w/o rel. corr.)
 - Keep the transverse polarisation for the CO yield
 - OK with ALICE, KO with CDF

- **K.T. Chao, et al.**
 - Less global fit with focus on high P_T pp data
 - Can give an **unpolarised** CO yield ... not far from the CDF data
Is the CO yield transverse or unpolarised at large P_T?

- M. Buttenschön & B. Kniehl
 - Global fit: pp, ep, $\gamma\gamma$, e^+e^- (w/o rel. corr.)
 - Keep the transverse polarisation for the CO yield
 - OK with ALICE, KO with CDF

- K.T. Chao, et al.
 - Less global fit with focus on high P_T pp data
 - Can give an unpolarised CO yield ... not far from the CDF data

These studies do not include χ_c feed-down ...

J.P. Lansberg (IPNO) QCD corrections and new observables

July 7, 2012 11 / 15
Is the CO yield transverse or unpolarised at large P_T?

- M. Buttenschön & B. Kniehl
 - Global fit: pp, ep, $\gamma\gamma$, e^+e^- (w/o rel. corr.)
 - Keep the transverse polarisation for the CO yield
 - OK with ALICE, KO with CDF

- K.T. Chao, et al.
 - Less global fit with focus on high P_T pp data
 - Can give an unpolarised CO yield ... not far from the CDF data
 - NLO state-of-the-art fits contradict each others as regards the polarisation – once thought to be a smoking gun signal...–!

These studies do not include χ_c feed-down...
Is the CO yield transverse or unpolarised at large P_T?

- M. Buttenschön & B. Kniehl
 - Global fit: pp, ep, $\gamma\gamma$, e^+e^- (w/o rel. corr.)
 - Keep the transverse polarisation for the CO yield
 - OK with ALICE, KO with CDF

- K.T. Chao, et al.
 - Less global fit with focus on high P_T pp data
 - Can give an unpolarised CO yield ... not far from the CDF data
 - NLO state-of-the-art fits contradict each others as regards the polarisation – once thought to be a smoking gun signal...–!

These studies do not include χ_c feed-down...
Part IV

New observables
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi + $lepton in the yield integrated over P_T

- peak at $\Delta \phi = \pi$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi + $lepton in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rapidity dependence gives info on $c(x)$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

plot for RHIC kinematics
Double charm: $J/\psi + D$

→ $J/\psi + D$ or $J/\psi +\text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rapidity dependence gives info on $c(x)$

→ $J/\psi + D$ or $J/\psi +\text{lepton}$ at large P_T (say, $P_T > 15$ GeV)
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rapidity dependence gives info on $c(x)$

$\rightarrow J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi +$ lepton in the yield integrated over P_T
- peak at $\Delta\phi = \pi$
- Rapidity dependence gives info on $c(x)$

$\rightarrow J/\psi + D$ or $J/\psi +$ lepton at large P_T (say, $P_T > 15$ GeV)
- Near D or lepton: signal of $c \rightarrow J/\psi + c$ "fragmentation"
- No near D in $gg \rightarrow gg \rightarrow ^3S^1_\perp g \rightarrow J/\psi c\bar{c}$ (If any c, both are away)

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

plot for RHIC kinematics

First measurement by LHCb (pDT ≥ 3 GeV ⇒ p charm quark T not small)

J.P. Lansberg (IPNO)
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi + $lepton in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rapidity dependence gives info on $c(x)$

$\rightarrow J/\psi + D$ or $J/\psi + $lepton at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
- No near D in $gg \rightarrow gg \rightarrow ^3S_1^{[8]} g \rightarrow J/\psi c\bar{c}$ (If any c, both are away)

\rightarrow First measurement by LHCb ($p_T^D \geq 3$ GeV $\Rightarrow p_T^{charm\ quark}$ not small)

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

plot for RHIC kinematics

LHCb arXiv:1205.0975
\(J/\psi + \text{prompt} \gamma \)

- At high energy, 2 gluons in the initial states: no quark
J/ψ + prompt γ

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the c-quark loop
$J/\psi + \text{prompt } \gamma$

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the c-quark loop
- Gluon fragmentation associated with $C = +1$ octet ($^1S_0^8$ and $^3P_j^8$)
$J/\psi + \text{prompt } \gamma$

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the c-quark loop
- Gluon fragmentation associated with $C = +1$ octet ($^1S_0^8$ and $^3P_J^8$)
- CS rate at NLO \simeq conservative (high) expectation from CO

R. Li and J. X. Wang, PLB 672, 51, 2009

CS rate at NNLO \star, CS rate clearly above (high) expectation from CO

Clearly, new info on CS vs CO w.r.t inclusive case!

Possible: see $(c, b) - \text{jet} + \gamma$ studies by D0 up to $P_{\gamma T} \simeq 150$ GeV!

D0, PRL 102 (2009) 192002.
\(J/\psi + \text{prompt } \gamma \)

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the \(c \)-quark loop
- Gluon fragmentation associated with \(C = +1 \) octet (\(^1S_0^8 \) and \(^3P_J^8 \))
- CS rate at NLO \(\sim \) conservative (high) expectation from CO \(\text{R.Li and J.X. Wang, PLB 672,51,2009} \)
- CO rates may be clearly lower if \(^1S_0^8 \) and \(^3P_J^8 \) are indeed suppressed (at NLO)
$J/\psi + \text{prompt } \gamma$

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the c-quark loop
- Gluon fragmentation associated with $C = +1$ octet ($^1S_0^{[8]}$ and $^3P_J^{[8]}$)
- CS rate at NLO \simeq conservative (high) expectation from CO

R.Li and J.X. Wang, PLB 672, 51, 2009

CO rates may be clearly lower if $^1S_0^{[8]}$ and $^3P_J^{[8]}$ are indeed suppressed

At NNLO*, CS rate clearly above (high) expectation from CO (at NLO)

J.P. Lansberg (IPNO)
At high energy, 2 gluons in the initial states: no quark
The photon needs to be emitted by the c-quark loop
Gluon fragmentation associated with $C = +1$ octet ($^1S_0^8$ and $^3P_J^8$)
CS rate at NLO \approx conservative (high) expectation from CO
CO rates may be clearly lower if $^1S_0^8$ and $^3P_J^8$ are indeed suppressed
At NNLO*, CS rate clearly above (high) expectation from CO (at NLO)

Clearly, new info on CS vs CO w.r.t inclusive case!
\[J/\psi + \text{prompt } \gamma \]

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the \(c \)-quark loop
- Gluon fragmentation associated with \(C = +1 \) octet (\(1S_0^8 \) and \(3P_J^8 \))
- CS rate at NLO \(\simeq \text{conservative (high) expectation from CO} \)
 - \(R.Li \) and J.X. Wang, PLB 672, 51, 2009
- CO rates may be clearly lower if \(1S_0^8 \) and \(3P_J^8 \) are indeed suppressed
- At NNLO\(^*\), CS rate clearly above (high) expectation from CO \(\text{(at NLO)} \)

\[
\begin{align*}
\frac{d\sigma}{dP_T}\left|_{y<3.0} \right. & \times Br(\gamma) \quad \text{at } P_T \simeq 150 \text{ GeV} \\
\end{align*}
\]

- Clearly, new info on CS vs CO w.r.t inclusive case!
- Possible: see \((c, b) - jet + \gamma\) studies by D0 up to \(P_T^\gamma \simeq 150 \text{ GeV} \)
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield:
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$

- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- QCD corrections open leading P_T channel: they are needed!

- $2 \rightarrow 3, 2 \rightarrow 4$ channels
- Drawback: large theoretical uncertainties...
- Dominant contributions are known only at Born order ($gg \rightarrow J/\psi gg$)
- (N)NLO corrections alter the polarization: transverse \rightarrow longitudinal (in HX)
- CO fits of xsection disagree in their prediction of polarisation
- Need for new observables, need for NLO evaluations at the LHC or elsewhere!

- Given the precision of the data at low P_T, one should re-think the opportunity of extracting $g(x)$ with quarkonium

A Fixed Target ExpeRiment at the LHC (AFTER) can also provide much information on quarkonia

see http://after.in2p3.fr and my talk earlier today

J.P. Lansberg (IPNO)

QCD corrections and new observables

July 7, 2012
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield: relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- LO CSM fails as far as $d\sigma/dP_T$ is concerned

Drawback: large theoretical uncertainties. . .
Dominant contributions are known only at Born order ($gg \rightarrow J/\psi gg$)
(N)NLO corrections alter the polarization: transverse \rightarrow longitudinal (in HX)

CO fits of xsection disagree in their prediction of polarisation
Need for new observables, need for NLO evaluations at the LHC or elsewhere!

Given the precision of the data at low P_T, one should re-think the opportunity of extracting $g(x)$ with quarkonium
A Fixed Target ExpeRiment at the LHC (AFTER) can also provide much information on quarkonia

See http://after.in2p3.fr and my talk earlier today
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield:
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- QCD corrections open leading P_T channel: they are needed!
 $2 \rightarrow 3, 2 \rightarrow 4$ channels
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:** relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- **LO CSM fails** as far as $d\sigma/dP_T$ is concerned
- QCD corrections open **leading** P_T channel: they are needed!

 $2 \rightarrow 3, 2 \rightarrow 4$ channels

- **Drawback:** large theoretical uncertainties...

 Dominant contributions are known only at Born order ($gg \rightarrow J/\psi ggg$)

J.P. Lansberg (IPNO)
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield:
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- QCD corrections open leading P_T channel: they are needed!
 $2 \rightarrow 3, 2 \rightarrow 4$ channels
- **Drawback**: large theoretical uncertainties. . .
 Dominant contributions are known only at Born order ($gg \rightarrow J/\psi g g g$)
- (N)NLO corrections alter the polarization:
 transverse \rightarrow longitudinal (in HX)

J.P. Lansberg (IPNO)

QCD corrections and new observables

July 7, 2012 15 / 15
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 - relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$

- **LO CSM fails** as far as $d\sigma/dP_T$ is concerned

- **QCD corrections open leading P_T channel:** they are needed!
 - $2 \rightarrow 3, 2 \rightarrow 4$ channels

- **Drawback:** large theoretical uncertainties...
 - Dominant contributions are known only at Born order ($gg \rightarrow J/\psi ggg$)

- **(N)NLO corrections alter the polarization:**
 - transverse \rightarrow longitudinal (in HX)

- **CO fits of xsection disagree in their prediction of polarisation**
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield:
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$

- LO CSM fails as far as $d\sigma / dP_T$ is concerned
- QCD corrections open leading P_T channel: they are needed!

- Drawback: large theoretical uncertainties...
 Dominant contributions are known only at Born order ($gg \rightarrow J/\psi gg$)
- (N)NLO corrections alter the polarization:
 transverse \rightarrow longitudinal (in HX)

- CO fits of xsection disagree in their prediction of polarisation
- Need for **new observables**, need for NLO evaluations at the LHC or elsewhere!
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$

- **LO CSM fails** as far as $d\sigma/dP_T$ is concerned

- QCD corrections open **leading P_T channel**: they are needed!
 $2 \rightarrow 3, 2 \rightarrow 4$ channels

- **Drawback**: large theoretical uncertainties... Dominant contributions are known only at Born order ($gg \rightarrow J/\psi ggg$)

- (N)NLO corrections alter the polarization:
 transverse \rightarrow longitudinal (in HX)

- CO fits of xsection disagree in their prediction of polarisation

- Need for **new observables**, need for NLO evaluations at the LHC or elsewhere!

- Given the precision of the data at low P_T, one should re-think the opportunity of extracting $g(x)$ with quarkonium
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield: relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- QCD corrections open leading P_T channel: they are needed!

 $2 \rightarrow 3$, $2 \rightarrow 4$ channels

- Drawback: large theoretical uncertainties... Dominant contributions are known only at Born order ($gg \rightarrow J/\psi ggg$)
- (N)NLO corrections alter the polarization:

 transverse \rightarrow longitudinal (in HX)

- CO fits of xsection disagree in their prediction of polarisation
- Need for **new observables**, need for NLO evaluations

 at the LHC or elsewhere!

- Given the precision of the data at low P_T, one should re-think the opportunity of extracting $g(x)$ with quarkonium

- A Fixed Target ExpeRiment at the LHC (AFTER) can also provide much information on quarkonia

 see http://after.in2p3.fr and my talk earlier today
Part V

Backup
Many hopes were put in quarkonium studies to extract gluon PDF.
Many hopes were put in quarkonium studies to extract gluon PDF
- in photo/lepto production (DIS)
- but also in $g - g$-fusion process
Many hopes were put in quarkonium studies to extract gluon PDF

- in photo/lepto production (DIS)
- but also in $g - g$-fusion process
- mainly because of the presence of a natural “hard” scale: m_Q
- and the good detectability of a dimuon pair
Many hopes were put in quarkonium studies to extract gluon PDF in photo/lepto production (DIS) but also in $g - g$-fusion process mainly because of the presence of a natural “hard” scale: m_Q and the good detectability of a dimuon pair.
Many hopes were put in quarkonium studies to extract gluon PDF
- in photo/lepto production (DIS)
- but also in $g-g$-fusion process
- mainly because of the presence of a natural “hard” scale: m_Q
- and the good detectability of a dimuon pair

J/ψ Production at large transverse momentum at hadron colliders

E.W.N. Glover\(^1\)*, A.D. Martin\(^2\), W.J. Stirling\(^2\)

1 Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England
2 Physics Department, University of Durham, Durham, DH1 3LE, England

Received 7 October 1987

Abstract. We calculate $J/ψ$ hadroproduction and emphasize the importance of the $J/ψ$ signal as a measure of $b\overline{b}$ production via the decay $B\rightarrow ψX$ and of the gluon structure function at low x via $χ$ hadroproduction followed by $χ\rightarrow ψγ$ decay. We compare with UA1 data and data at ISR energies and make predictions for $ψ$ production at TEVATRON energies.
Many hopes were put in quarkonium studies to extract gluon PDF

- in photo/lepto production (DIS)
- but also in $g - g$-fusion process
- mainly because of the presence of a natural "hard" scale: m_Q
- and the good detectability of a dimuon pair
Impact of QCD corrections to CSM at mid and high P_T

![Graph showing $d\sigma/dP_T$ for $|y|<0.4$ and $|y|<0.6$ with CDF data and different LO, NLO, NNLO curves.]

- LO
- NLO
- NNLO

For NNLO* curves:
- $m_c^2 < s_{ij}$
- $m_c^2 < 4m_c^2$

LO ≈ NLO
NLO ≈ NNLO*

The NNLO* is not a complete NNLO → possibility of uncanceled logs!

Two possibilities:
- ↓ NNLO
- ↓ CO contributions likely significant
- CS alone is enough

Issues with polarization unless S[8]1

↔ NNLO Collinear fact.

J.P. Lansberg (IPNO)
Impact of QCD corrections to CSM at mid and high P_T

For $\Upsilon(1S)$ prompt data and LO, NLO, NNLO:

- $\Upsilon(1S)$ production
 - at $\sqrt{s}=1.96$ TeV
 - scale and mass uncertainties combined in quadrature

For NNLO* curves:

- $m_{c^2} < s_{ij}^{\text{min}} < 4 m_{c^2}$

CO contributions likely significant
CS alone is enough

Issues with polarisation unless

$S[8]_3$ and $S[8]_0$ & $S[8]_3$ facts.

$\psi(2S)$ production

- at $\sqrt{s}=1.96$ TeV

- CDF data

- for NNLO curves:
 - $m_{c^2} < s_{ij}^{\text{min}} < 4 m_{c^2}$

J.P. Lansberg (IPNO)
QCD corrections and new observables
July 7, 2012 18 / 15
The NNLO* is not a complete NNLO \rightarrow possibility of uncanceled logs!
Impact of QCD corrections to CSM at mid and high P_T

The NNLO* is not a complete NNLO \rightarrow possibility of uncanceled logs!

Two possibilities?

- $\text{NNLO} \approx \text{NLO}$
- $\text{NNLO} \approx \text{NNLO}^*$
Impact of QCD corrections to CSM at mid and high P_T

The NNLO* is not a complete NNLO \rightarrow possibility of uncanceled logs!

Two possibilities?

NNLO \simeq NLO

↓

CO contributions likely significant

NNLO \simeq NNLO*

↓

CS alone is enough
The NNLO* is not a complete NNLO \rightarrow possibility of uncanceled logs!

Two possibilities?

- **NNLO \simeq NLO**
 - CO contributions likely significant
 - Issues with polarisation unless $^{3}S_{1}^{[8]}$ small

- **NNLO \simeq NNLO***
 - CS alone is enough
 - Ok with polarisation
Impact of QCD corrections to CSM at mid and high P_T

The NNLO* is not a complete NNLO → possibility of uncanceled logs!

Two possibilities?

- **NNLO \simeq NLO**
 - CO contributions likely significant
 - Issues with polarization unless $^3S_1^{[8]}$ small
 - $e^+ e^-$ constraints on $^1S_0^{[8]}$ & $^3P_J^{[8]}$

- **NNLO \simeq NNLO***
 - CS alone is enough
 - Ok with polarization
 - k_T fact. \leftrightarrow NNLO Collinear fact.?
Analogy with the P_T spectrum for the Z^0 boson

![Graph showing the $\gamma(1S)$ prompt data $\times F_{\text{direct}}$ compared to LO, NLO, and NNLO predictions.](image)
QCD corrections for $\psi(2S)$ at the Tevatron

ψ(2S) production at sqrt(s)=1.96 TeV
LO NLO NNLO*
CDF data
scale and mass uncertainties combined in quadrature

for NNLO* curves:
$m_c^2 < s_{ij}^{\min} < 4 m_c^2$

Disclaimer: comparison to be done with the CMS data:
published in JHEP 1202 (2012) 011
QCD corrections for $\psi(2S)$ at the Tevatron & the LHC

LHCb, arxiv:1204.1258

Disclaimer: comparison to be done with the CMS data: published in JHEP 1202 (2012) 011