Measurements of the inclusive cross section and of differential distributions in top quark pair production

Christian Schwanenberger
University of Manchester

on behalf of

36th International Conference on High-Energy Physics
Melbourne
05/07/2012
The Top Quark

- needed as isospin partner of bottom quark
- discovered in 1995 by CDF and DØ: $m_{\text{top}} \sim$ gold atom
- large coupling to Higgs boson ~ 1: important role in electroweak symmetry breaking?
- short lifetime: $\tau \sim 5 \cdot 10^{-25} \text{s} \ll \Lambda_{\text{QCD}}^{-1}$: decays before fragmenting → observe “naked” quark

Is the top quark the particle as predicted by the SM?
The Tevatron at FERMILAB: \(pp \) Collisions

Is the top quark the particle as predicted by the Standard Model?

- Run I 1987 (92)-95
- Run II 2001-11: 100x larger dataset at increased energy

\[\sqrt{s} = 1.96 \text{ TeV} \]
\[\Delta t = 396 \text{ ns} \]
Tevatron Integrated Luminosity

Run II Integrated Luminosity

19 April 2002 - 30 September 2011

Delivered
Recorded

up to 5.4 fb$^{-1}$

Thanks to accelerator and computing divisions!
Inclusive production cross section
Differential cross section
Top mass
Lorentz invariance violation
Conclusions
Outline

Inclusive production cross section

Differential cross section

Top mass

Lorentz invariance violation

Conclusions
Top Quark Pair Production

\[\sigma_{tt} = 7.46^{+0.48}_{-0.67} \text{ pb in NNLO} \text{ (approx)} \]

\(m_{\text{top}} = 172.5 \text{ GeV} \)

PRD 78, 034003 (2008)
Top Pair Signatures

top decay:

\[\sim 100\% \]

\[t \rightarrow w^+ l^+ \bar{q}' \]

\[b \rightarrow \nu, q \]

\[\tau^{'s} \]

\[14\% \]

\[\text{tt decay modes} \]

\[\text{all jet} \]

\[46\% \]

\[\text{lepton + jets} \]

\[\text{tau + jets} \]

\[\text{all hadronic} \]

\[\text{dilepton (e/\mu)} \]

\[6\% \]

\[\text{e/\mu + jet} \]

\[34\% \]
Lepton+Jets Topological Cross Section

Powerful test of QCD and search for new physics

- Kinematic properties allow separation between signal and background

Use variables such as:

Energy-dependent quantities:
- E.g. transverse mass of leptonic top

Angular dependent:
- E.g. sphericity

Random Forests of Boosted Decision Trees
Lepton+Jets Topological Cross Section

powerful test of QCD and search for new physics

- kinematic properties allow separation between signal and background

use variables such as:

energy-dependent quantities:
- e.g. transverse mass of leptonic top

angular dependent:
- e.g. sphericity

Random Forests of Boosted Decision Trees

W+jets

W+jets
Lepton+Jets Topological Cross Section

\[\sigma_{tt} = 7.68^{+0.71}_{-0.64} \text{ (stat+syst+lumi) pb} \]

\[m_{\text{top}} = 172.5 \text{ GeV} \]

DØ, L=5.3 fb^{-1}

\[\geq 4 \text{ jets} \]

\[\geq 3 \text{ jets} \Rightarrow 4 \text{ jets} \]

\[e \text{ and } \mu \]

up to 6 variables

combine:
- 2 jets
- 3 jets
- \(\geq 4 \) jets
- e and \(\mu \)
b-tagging

- B hadron lifetime $\tau \sim 1$ ps
- B hadrons travel $L_{xy} \sim 3$ mm before decay

secondary vertex tagger
- 45% b-jet tagging efficiency (with fake rate of 1%)

form a 7-variable neural network
- b-jet tagging efficiency 59% (with fake rate of 1%)

Secondary vertex measurement flowchart

Secondary vertex measurement comparison chart
Lepton+Jets Cross Section with b-tagging

very powerful tool to reduce the background

\[
\sigma_{tt} = 8.13^{+1.02}_{-0.90} \text{ pb}\]

\[m_{\text{top}} = 172.5 \text{ GeV}\]
Combined Method

W+jets & heavy flavor scale factor f_H

systematically limited:
- luminosity
- JES and JER
- b-tagging

b-jet counting

$m_{top} = 172.5$ GeV

$\sigma_{tt} = 7.78^{+0.77}_{-0.64}$ (stat+syst+lumi) pb

Phys. Rev. D 84, 012008 (2011)
Dilepton Cross Section with b-tagging

$\sigma_{\text{tt}} = 7.36^{+0.90}_{-0.79}\,\text{(stat+syst+lumi)}\,\text{pb}$

$\pm 11\%$

$m_{\text{top}} = 172.5$ GeV

Top Pair Production Cross Sections

Combination: \(l + \text{jets and dilepton} \)

\[\sigma_{\text{tt}} = 7.56^{+0.63}_{-0.56} \text{ pb} \]

\(m_{\text{top}} = 172.5 \text{ GeV} \)

→ good agreement with higher order QCD calculations

DØ Run II

\(\sigma(p\bar{p} \rightarrow t\bar{t} + X) \) [pb]

\[\begin{align*}
\text{lepton+jets + dileptons (PLB)} & : 7.40^{+0.19}_{-0.19}^{+0.54}_{-0.54} \text{ pb} \\
\text{lepton+jets (topo + b-tagged, PRD)} & : 7.65^{+0.25}_{-0.25}^{+0.75}_{-0.67} \text{ pb} \\
\text{dileptons (topo + b-tagged, PLB)} & : 7.27^{+0.45}_{-0.45}^{+0.76}_{-0.63} \text{ pb} \\
\text{lepton+track (b-tagged)*} & : 5.0^{+1.0}_{-1.0}^{+1.0} \text{ pb} \\
\text{tau+lepton (b-tagged)*} & : 7.32^{+1.34}_{-1.09}^{+1.34}_{-1.09} \text{ pb} \\
\text{tau+jets (b-tagged, PRD)} & : 6.30^{+1.15}_{-1.09}^{+0.72}_{-0.67} \text{ pb} \\
\text{all jets (b-tagged, PRD)} & : 6.9^{+1.3}_{-1.3}^{+1.4}_{-1.4} \text{ pb} \\
\end{align*} \]

\(m_{\text{top}} = 175 \text{ GeV} \)

CTEQ6.1M

M. Cacciari et al., JHEP 0809. 127 (2008)
S. Moch and P. Uwer, PRD 78, 034003 (2008)

* = preliminary
red = 2011 result
blue = 2010 results

\(\frac{\text{stat}}{\text{syst}} \) (lumi)
Outline

Inclusive production cross section
Differential cross section
Top mass
Lorentz invariance violation
Conclusions
Differential Cross Section

- important test of NLO QCD
- unfolding of distributions

need NLO QCD to describe normalisation correctly

Differential Cross Section

- important test of NLO QCD
- unfolding of distributions

need NLO QCD to describe normalisation correctly

shape described well by PYTHIA and ALPGEN

DØ

- data, 1 fb^{-1}
- NLO pQCD
- Approx. NNLO pQCD
- MC@NLO
- PYTHIA
- ALPGEN

(tree level LO)

(tree level incl. higher orders)

Shape ratio to NLO pQCD

(0 50 100 150 200 250 300 350 400)
Outline

Inclusive production cross section
Differential cross section
Top mass
Lorentz invariance violation
Conclusions
What mass do we measure?

\[L = \ldots - \bar{\psi} M \psi (1 + \frac{H}{\nu}) \ldots \]

- **LO QCD**: free parameter
- **NLO QCD**: dependent on the renormalisation scale \(M \)

"Bare" parameters of QCD:
\[g_s, m_u, m_d, m_s, m_c, m_b, m_t \]

Renormalised parameters of QCD:
\[g_s(M), m_u(M), m_d(M), m_s(M), m_c(M), m_b(M), m_t(M) \]

the concept of quark mass is convention-dependent!
Important to know...

- measurement reconstructing decay products: depends on MC mass details
- how does MC mass relate to pole mass or running mass scheme?

• can we measure pole or MS mass in direct and well-defined way?

![Graph showing a relationship between M_w and M_t with shaded regions indicating excluded masses and a peak at pole mass.](image-url)
Important to know...

- measurement reconstructing decay products: depends on MC mass details
- how does MC mass relate to pole mass or running mass scheme?

![Graph showing relationship between pole mass and world average mass interpreted as MS mass with a deviation of ~10 GeV (3-loop)].

- can we measure pole or MS mass in direct and well-defined way?
Top Quark Pole Mass

- MC mass = pole mass
- use b-tagged cross section since less dependent on mass
- difference due to MC mass interpretation is included into systematics

\[m_t^{\text{pole}} = 166.7^{+5.2}_{-4.5} \text{ GeV} \pm 2.9\% \]
Top Quark Pole Mass

- use b-tagged cross section since less dependent on mass
- difference due to MC mass interpretation is included into systematics

\[m_t = 166.7^{+5.2}_{-4.5} \text{ GeV} \pm 2.9\% \]

1σ consistent with Tevatron average: $m_t = 173.3 \pm 1.1$ GeV
Top Quark $\overline{\text{MS}}$ Mass

- Better convergence of higher order resummation

MC mass = pole mass

- First extraction of $\overline{\text{MS}}$ mass taking selection efficiency into account

\[m_t^{\overline{\text{MS}}} = 160.0^{+4.8}_{-4.3} \text{ GeV} \pm 2.8\% \]

- Tevatron average is more consistent with a pole mass!

- Better convergence of higher order resummation

- First extraction of $\overline{\text{MS}}$ mass taking selection efficiency into account

\[m_t^{\overline{\text{MS}}} = 160.0^{+4.8}_{-4.3} \text{ GeV} \pm 2.8\% \]
Top Quark Mass

- First extraction of MS mass taking selection efficiency into account

 \[m_t^{\text{MS}} = 160.0^{+4.8}_{-4.3} \text{ GeV} \]
 \[\pm 2.8\% \]

- \(2\sigma\) consistent with Tevatron average: \(m_t = 173.3 \pm 1.1\) GeV

- Tevatron average is more consistent with a pole mass!
Inclusive production cross section
Differential cross section
Top mass
Lorentz invariance violation
Conclusions
Search for Lorentz invariance violation

General Lorentz invariance violating terms added to SM Lagrangian:

\[|M|^2 = P F \bar{F} + (c_R + c_L)_{\mu\nu} (\delta P_p + \delta P_v)^{\mu\nu} F \bar{F} + (c_L)_{\mu\nu} \left(P(\delta F)^{\mu\nu} \bar{F} + P F (\delta \bar{F})^{\mu\nu} \right) \]

symmetric traceless matrices:
strength of Lorentz invariance violation
Search for Lorentz invariance violation

\[N_i \approx N_{\text{tot}} \frac{\mathcal{L}_i}{\mathcal{L}_{\text{int}}} [1 + f_S f_{\text{SME}}(\phi_i)] \]

- \(\mathcal{L}_i \) is the integrated luminosity over appropriate bin of sidereal phase \(\phi_i \)
- \(f_S \) is the fraction of signal (\(t\bar{t} \)) events

\[R_i \equiv \frac{1}{f_S} \left(\frac{N_i}{N_{S+B}} \frac{\mathcal{L}_i}{\mathcal{L}_{\text{int}}} - 1 \right) \]

\[\rightarrow \text{no indication of time dependence of } t\bar{t} \text{ cross section} \]

\[\rightarrow \text{first constraints on LIV in free quark sector } (c_L)_{XX}, (c_L)_{XY}, \ldots, (c_R)_{XX}, \ldots \]
Conclusions

Highlights of top pair production physics:

- top pair production cross section
 8% precision, many channels analyzed, good agreement with NLO QCD predictions, no new physics observed

- differential cross section is investigated
 e.g. top quark transverse momentum, powerful QCD tests

- pole and MS mass
 pole mass agrees with Tevatron combination within 1σ

- top quark production as expected in SM
 new tests using NNLO+NNLL calculations: 3% uncertainty
Backup
Lepton+jets Signatures

signal

- $e/\mu + \text{jet}$

- $W + \text{jets}$

- Multijets

background

- $q'\bar{q}$

- W^{+}

- b and \bar{b}

- W^{-}

3000 times higher rate

1010 times higher rate

Jet 1

Jet 2

SV
Dilepton Signatures

signal

- ee, eμ, μμ

background

300 times higher rate

- Z + jets

- less statistics
- less background

→ electron+muon event with b-tagging
Top Pair Production Cross Section

- check if production rate is as expected in the SM
- test of the underlying theory: QCD
- powerful search for new physics beyond the SM

Measurement: \[\sigma = \frac{N_{\text{obs}} - N_{\text{bg}}}{\varepsilon L} \]

5.4 fb^{-1}
Top Pair Production Cross Sections

- Good agreement with SM in all channels
- All channels measured except for τ-hadrons
- Combination: ±6%
Differential Cross Section

- important test of NLO QCD
- unfolding of distributions

need NLO QCD to describe normalisation correctly

no deviation from the SM

Differential Cross Section

- important test of NLO QCD
- unfolding of distributions

- need NLO QCD to describe normalisation correctly
- no deviation from the SM
- NLO+NNLL: improvement

Ahrens, Ferrogia, Neubert, Pecjak, Yang
Which top mass does a LO MC contain?

- matrix element in LO QCD
Which top mass does a LO MC contain?

- matrix element in LO QCD

- parton showers simulate higher orders, i.e. not only radiating additional gluons!
Which top mass does a LO MC contain?

- matrix element in LO QCD

- parton showers simulate higher orders,
Which top mass does a LO MC contain?

- matrix element in LO QCD

- parton showers simulate higher orders, i.e. not only radiating additional gluons!
Which top mass does a LO MC contain?

- matrix element in LO QCD

- parton showers simulate higher orders, i.e. **not** only radiating additional gluons! (LL)

 \[\Rightarrow \text{very hard to answer...} \]

- arguments that it should be close to pole mass
Top Quark Pole Mass

<table>
<thead>
<tr>
<th>Theoretical prediction</th>
<th>m_t^{pole} (GeV)</th>
<th>Δm_t^{pole} (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC mass assumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLO [12]</td>
<td>$164.8^{+5.7}_{-5.4}$</td>
<td>-3.0</td>
</tr>
<tr>
<td>NLO+ NLL [13]</td>
<td>$166.5^{+5.5}_{-4.8}$</td>
<td>-2.7</td>
</tr>
<tr>
<td>NLO+ NNLL [14]</td>
<td>$163.0^{+5.1}_{-4.6}$</td>
<td>-3.3</td>
</tr>
<tr>
<td>Approximate NNLO [15]</td>
<td>$167.5^{+5.2}_{-4.7}$</td>
<td>-2.7</td>
</tr>
<tr>
<td>Approximate NNLO [16]</td>
<td>$166.7^{+5.2}_{-4.5}$</td>
<td>-2.8</td>
</tr>
</tbody>
</table>

• use b-tagged cross section since less dependent on mass
• difference due to MC mass interpretation is included into systematics

MC mass = pole mass

$$m_t^{\text{pole}} = 166.7^{+5.2}_{-4.5} \text{ GeV} \pm 2.9\%$$

• 1σ consistent with Tevatron average: $m_t = 173.3 \pm 1.1 \text{ GeV}$
Top Quark \(\overline{\text{MS}}\) Mass

better convergence of higher order resummation

<table>
<thead>
<tr>
<th>Theoretical prediction</th>
<th>(m_t^{\overline{\text{MS}}}) (GeV)</th>
<th>(\Delta m_t^{\overline{\text{MS}}}) (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC mass assumption</td>
<td>(m_t^{\text{MC}} = m_t^{\text{pole}})</td>
<td>(m_t^{\text{MC}} = m_t^{\overline{\text{MS}}})</td>
</tr>
<tr>
<td>NLO+NNLL [14]</td>
<td>154.5(^{+5.0}_{-4.3})</td>
<td>-2.9</td>
</tr>
<tr>
<td>Approximate NNLO [15]</td>
<td>160.0(^{+4.8}_{-4.3})</td>
<td>-2.6</td>
</tr>
</tbody>
</table>

\(m_t^{\overline{\text{MS}}} = 160.0_{-4.3}^{+4.8} \) GeV \(\pm 2.8\%\)

- first extraction of \(\overline{\text{MS}}\) mass taking selection efficiency into account
- 2\(\sigma\) consistent with Tevatron average: \(m_t = 173.3 \pm 1.1\) GeV
- Tevatron average is more consistent with a pole mass!

arXiv:1104.2887 [hep-ex]

Moch, Uwer
Ahrens et al.
Different Top Mass Definitions

\[\overline{m}_t \equiv m_t^{\overline{\text{MS}}} (m_t) = \frac{M_t}{1 + \frac{4}{3\pi} \alpha_s(M_t)} \]

\[\overline{m}_t \approx m_t^{\overline{\text{MS}}} (m_t) = \frac{1}{p^2 - M_t^2 - i\Gamma_t M_t} \]

⇒ difference between \(\overline{\text{MS}} \) and pole mass is \(\approx 10 \text{GeV} \)...
Search for Lorentz invariance violation

- General Lorentz-violating terms added to SM Lagrangian
 - Effective field theory treatment for LV
 - Not constrained to be the same for all particle species

\[|M|^2 = \left(P F \bar{F} + (c_R + c_L)_{\mu \nu} (\delta P^p + \delta P^v)_{\mu \nu} F \bar{F} + (c_L)_{\mu \nu} P (\delta F)_{\mu \nu} \bar{F} + P F (\delta \bar{F})_{\mu \nu} \right) \]

- \(c_R \) and \(c_L \) are symmetric, traceless matrices containing coefficients which parametrize the strength of Lorentz violation in the top quark sector
- Set limits on elements of \(c_R \) and \(c_L \), as well as linear combinations \(c = c_L + c_R \) and \(d = c_L - c_R \).
- Top sector only accessible to high-energy particle colliders
 - Tight limits already set on LV other particle sectors
Search for Lorentz invariance violation

- GOAL: Estimate components of c_R and c_L matrices

\[c_{Apparatus}^{L(R)} = \hat{R}(\omega_{side} t)_{(Sun\rightarrow Apparatus)} c_{Sun}^{L(R)} \]

- D-Zero events projected onto different components of SME matrices c_R and c_L
 - Varies with sidereal frequency as detector rotates with Earth
 - Unique signature!
 - Time-dependent event rate.