AFTER @ LHC

A Fixed-Target Experiment using the proton and lead LHC beams

Jean-Philippe Lansberg
IPN Orsay, Université Paris-Sud

July 7, 2012 – IHEP 2012 – Melbourne, Australia

on behalf of F. Fleuret (LLR), S.J. Brodsky (SLAC), C. Hadjidakis (IPN), R. Arnaldi (Torino), V. Chambert (IPN), J.P. Didelez (IPN), B. Genolini (IPN), E.G. Ferreiro (USC), A. Rakotozafindrabe (CEA), P. Rosier (IPN), E. Scomparin (Torino), and U.I. Uggerhøj (Aarhus) + M. Anselmino, I. Schienbein

J.P. Lansberg (IPNO, Paris-Sud U.)
The European strategy for particle physics
Approved by the CERN council at the special Session held in Lisbon on 14 July, 2006

Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment, without affecting the LHC performance with an extracted beam line using a bent crystal with the possibility of polarising the target without target-species limitation with an outstanding luminosity with virtually no limit on particle-species studies (except top quark) with modern detection techniques.
9. A variety of important research lines are at the interface between particle and nuclear physics requiring dedicated experiments; Council will seek to work with NuPECC in areas of mutual interest, and maintain the capability to perform fixed target experiments at CERN.
9. A variety of important research lines are at the interface between particle and nuclear physics requiring dedicated experiments; *Council will seek to work with NuPECC in areas of mutual interest, and maintain the capability to perform fixed target experiments at CERN.*
The European strategy for particle physics
Approved by the CERN council at the special Session held in Lisbon on 14 July, 2006

9. A variety of important research lines are at the interface between particle and nuclear physics requiring dedicated experiments; Council will seek to work with NuPECC in areas of mutual interest, and maintain the capability to perform fixed target experiments at CERN.

Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment,
9. A variety of important research lines are at the interface between particle and nuclear physics requiring dedicated experiments; Council will seek to work with NuPECC in areas of mutual interest, and maintain the capability to perform fixed target experiments at CERN.

Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment,

- without affecting the LHC performance
- with an extracted beam line using a bent crystal
The European strategy for particle physics
Approved by the CERN council at the special Session held in Lisbon on 14 July, 2006

9. A variety of important research lines are at the interface between particle and nuclear physics requiring dedicated experiments; Council will seek to work with NuPECC in areas of mutual interest, and maintain the capability to perform fixed target experiments at CERN.

Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment,

- without affecting the LHC performance
- with an extracted beam line using a bent crystal
- with the possibility of polarising the target
- without target-species limitation
9. A variety of important research lines are at the interface between particle and nuclear physics requiring dedicated experiments; Council will seek to work with NuPECC in areas of mutual interest, and maintain the capability to perform fixed target experiments at CERN.

Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment,

- without affecting the LHC performance
- with an extracted beam line using a bent crystal
- with the possibility of polarising the target
- without target-species limitation
- with an outstanding luminosity
- with virtually no limit on particle-species studies (except top quark)
9. A variety of important research lines are at the interface between particle and nuclear physics requiring dedicated experiments; Council will seek to work with NuPECC in areas of mutual interest, and maintain the capability to perform fixed target experiments at CERN.

Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment, without affecting the LHC performance:

- with an extracted beam line using a bent crystal
- with the possibility of polarising the target
- without target-species limitation
- with an outstanding luminosity
- with virtually no limit on particle-species studies (except top quark)
- with modern detection techniques
Part I

A fixed-target experiment using the LHC beam(s): generalities
A Fixed Target Experiment using the LHC beams

Generalities

- \(pp \) or \(pA \) with a 7 TeV \(p \) beam: \(\sqrt{s} \sim 115 \text{ GeV} \)
- For \(pA \), a Fermi motion of 0.2 GeV would induce a spread of 10% of \(\sqrt{s} \)

S. Fredriksson, NPB 94 (1975) 337
A Fixed Target Experiment using the LHC beams

Generalities

- **pp or pA with a 7 TeV p beam**: $\sqrt{s} \simeq 115$ GeV
- For **pA**, a Fermi motion of 0.2 GeV would induce a spread of 10% of \sqrt{s}
- Boost: $\gamma_{CM}^{lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$; rapidity shift: $\Delta y = \tanh^{-1} \beta_{CM}^{lab} \simeq 4.8$

S. Fredriksson, NPB 94 (1975) 337

Pb p or Pb A with a 2.75 TeV Pb beam: $\sqrt{s}_{NN} \simeq 72$ GeV

Crystal channeling is also possible for heavy-ion beams

Recent test with Pb at SPS: W. Scandale et al., PLB 703 (2011) 547

If required, bent diamonds may provide a crystal highly resistant to radiations

Diamond bending by laser ablation: P. Ballin et al., NIMB 267 (2009) 2952

Tests will be performed on the LHC beam: LUA9 proposal approved by the LHCC

J.P. Lansberg (IPNO, Paris-Sud U.)
A Fixed Target Experiment using the LHC beams

Generalities

- pp or pA with a 7 TeV p beam: $\sqrt{s} \approx 115$ GeV
- For pA, a Fermi motion of 0.2 GeV would induce a spread of 10% of \sqrt{s}

 S. Fredriksson, NPB 94 (1975) 337

- Boost: $\gamma_{CM}^{lab} = \frac{\sqrt{s}}{2m_p} \approx 60$; rapidity shift: $\Delta y = \tanh^{-1} \beta_{CM}^{lab} \approx 4.8$

- The beam may be extracted using “Strong crystalline field”
 without any performance decrease of the LHC!

A Fixed Target Experiment using the LHC beams

Generalities

- pp or pA with a 7 TeV p beam: $\sqrt{s} \approx 115$ GeV
- For pA, a Fermi motion of 0.2 GeV would induce a spread of 10% of \sqrt{s}

 S. Fredriksson, NPB 94 (1975) 337

- Boost: $\gamma_{CM}^{lab} = \frac{\sqrt{s}}{2m_p} \approx 60$; rapidity shift: $\Delta y = \tanh^{-1} \beta_{CM}^{lab} \approx 4.8$

- The beam may be extracted using “Strong crystalline field” without any performance decrease of the LHC!

- Pbp or PbA with a 2.75 TeV Pb beam: $\sqrt{S_{NN}} \approx 72$ GeV
- Crystal channeling is also possible for heavy-ion beams

 Recent test with Pb at SPS: W. Scandale et al., PLB 703 (2011) 547

- If required, bent diamonds may provide a crystal highly resistant to radiations

 Diamond bending by laser ablation: P. Ballin et al., NIMB 267 (2009) 2952
A Fixed Target Experiment using the LHC beams

Generalities

- **pp** or **pA** with a 7 TeV **p** beam: \(\sqrt{s} \approx 115 \) GeV
- For **pA**, a Fermi motion of 0.2 GeV would induce a spread of 10 % of \(\sqrt{s} \)

 S. Fredriksson, NPB 94 (1975) 337

- Boost: \(\gamma_{\text{CM}}^{\text{lab}} = \frac{\sqrt{s}}{2m_p} \approx 60 \); rapidity shift: \(\Delta y = \tanh^{-1} \beta_{\text{CM}}^{\text{lab}} \approx 4.8 \)

- The beam may be extracted using “Strong crystalline field” without any performance decrease of the LHC!

- **Pbp** or **PbA** with a 2.75 TeV **Pb** beam: \(\sqrt{s_{\text{NN}}} \approx 72 \) GeV
- Crystal channeling is also possible for heavy-ion beams

 Recent test with Pb at SPS: W. Scandale et al., PLB 703 (2011) 547

- If required, bent diamonds may provide a crystal highly resistant to radiations

 Diamond bending by laser ablation: P. Ballin et al., NIMB 267 (2009) 2952

- Tests will be performed on the LHC beam:

 LUA9 proposal approved by the LHCC
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+\,s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+\,s^{-1}$ (1/2 the beam loss)

A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss)
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} \, p^+ = 3.2 \times 10^{14} \, p^+$

Revolution frequency: Each bunch passes the extraction point at a rate of $3 \times 10^5 \, km.s^{-1}$ or $\frac{27 \, km}{11 \, kHz}$

Extracted “mini” bunches: the crystal sees $2808 \times 11000 \, s^{-1} \approx 3 \times 10^7 \, bunched \, s^{-1}$ one extracts $5 \times 10^8 / 3 \times 10^7 \approx 16 \, p^+$ from each bunch at each pass

Provided that the probability of interaction with the target is below 5%... no pile-up...

Extraction over a 10h fill: $5 \times 10^8 \, p^+ \times 3600 \, s \times 10^{-1} \times 10 \, h = 1.8 \times 10^{13} \, p^+$ fill

This means $1.8 \times 10^{13} / 3.2 \times 10^{14} \approx 5.6%$ of the p^+ in the beam

These protons are lost anyway!

Similar figures for the Pb-beam extraction
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} \, p^+ = 3.2 \times 10^{14} \, p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \, \text{km.s}^{-1}/27 \, \text{km} \simeq 11 \, \text{kHz}$
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss)
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \, \text{km.s}^{-1}/27 \, \text{km} \simeq 11 \, \text{kHz}$
- Extracted “mini” bunches:
 - the crystal sees $2808 \times 11000 \, \text{s}^{-1} \simeq 3.10^7 \, \text{bunches s}^{-1}$
 - one extracts $5.10^8/3.10^7 \simeq 16 p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%, no pile-up...
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss)
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \, \text{km.s}^{-1}/27 \, \text{km} \approx 11 \, \text{kHz}$
- Extracted “mini” bunches:
 - the crystal sees $2808 \times 11000 \, \text{s}^{-1} \approx 3.10^7 \, \text{bunches s}^{-1}$
 - one extracts $5.10^8 / 3.10^7 \approx 16 p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \, \text{s} h^{-1} \times 10 \, \text{h} = 1.8 \times 10^{13} p^+ \, \text{fill}^{-1}$
 - This means $1.8 \times 10^{13} / 3.2 \times 10^{14} \approx 5.6\%$ of the p^+ in the beam
 These protons are lost anyway!
A few figures on the (extracted) proton beam

- Beam loss: \(10^9 \, p^+ s^{-1}\)
- Extracted intensity: \(5 \times 10^8 \, p^+ s^{-1}\) (1/2 the beam loss)
- Number of \(p^+\): 2808 bunches of \(1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+\)
- Revolution frequency: Each bunch passes the extraction point at a rate of \(3 \times 10^5 \, \text{km.s}^{-1}/27 \, \text{km} \simeq 11 \, \text{kHz}\)
- Extracted “mini” bunches:
 - the crystal sees \(2808 \times 11000 \, \text{s}^{-1} \simeq 3.10^7 \, \text{bunches s}^{-1}\)
 - one extracts \(5.10^8/3.10^7 \simeq 16p^+\) from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%, no pile-up...
- Extraction over a 10h fill:
 - \(5 \times 10^8 p^+ \times 3600 \, \text{s} \, \text{h}^{-1} \times 10 \, \text{h} = 1.8 \times 10^{13} p^+ \, \text{fill}^{-1}\)
 - This means \(1.8 \times 10^{13}/3.2 \times 10^{14} \simeq 5.6\%\) of the \(p^+\) in the beam
 These protons are lost anyway!
- similar figures for the Pb-beam extraction
Luminosities

- Instantaneous Luminosity:
 \[\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times N_A) / A \]
 \[\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}, \ \ell = 1 \text{ cm (target thickness)} \]
Luminosities

- **Instantaneous Luminosity:**
 \[
 \mathcal{L} = \Phi_{\text{beam}} \times N_{\text{target}} = N_{\text{beam}} \times (\rho \times \ell \times N_A) / A
 \]

 \[\Phi_{\text{beam}} = 5 \times 10^8 \text{ } p^+ \text{ s}^{-1}, \quad \ell = 1 \text{ cm} \text{ (target thickness)}\]

- **Integrated luminosity**
 \[
 \int dt \mathcal{L} = \mathcal{L} \times 10^{7(6)} \text{ s } p^+ \text{ (or Pb)}
 \]

Using \(NA51\)-like 1.2m-long liquid \(\text{H}_2 \) & \(\text{D}_2 \) targets, \[
\mathcal{L}_{\text{H}_2 / \text{D}_2} \simeq 20 \text{ fb}^{-1} \text{ yr}^{-1}
\]

Planned lumi for PHENIX Run14pp 12 pb\(^{-1}\) and Run14 \(d\)\(Au\) 0.15 pb\(^{-1}\)

Lumi for Pb runs in the backup slides

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER: A fixed-target experiment at LHC
Luminosities

- **Instantaneous Luminosity:**
 \[\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times N_A) / A \]
 \[\Phi_{beam} = 5 \times 10^8 \, \text{p}^+ \text{s}^{-1}, \quad \ell = 1 \, \text{cm} \text{ (target thickness)} \]

- **Integrated luminosity**
 \[\int dt \mathcal{L} = \mathcal{L} \times 10^7(6) \, \text{s} \, \text{p}^+ \text{ (or Pb)} \]

- **Expected luminosities with** \(5 \times 10^8 \, \text{p}^+ \text{s}^{-1} \) **extracted** (1 cm-long target)

<table>
<thead>
<tr>
<th>Target</th>
<th>(\rho) (g.cm(^{-3}))</th>
<th>A</th>
<th>(\mathcal{L}) ((\mu \text{b}^{-1} \cdot \text{s}^{-1}))</th>
<th>(\int \mathcal{L}) ((\text{pb}^{-1} \cdot \text{yr}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol. H(_2)</td>
<td>0.09</td>
<td>1</td>
<td>26</td>
<td>260</td>
</tr>
<tr>
<td>Liq. H(_2)</td>
<td>0.07</td>
<td>1</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Liq. D(_2)</td>
<td>0.16</td>
<td>2</td>
<td>24</td>
<td>240</td>
</tr>
<tr>
<td>Be</td>
<td>1.85</td>
<td>9</td>
<td>62</td>
<td>620</td>
</tr>
<tr>
<td>Cu</td>
<td>8.96</td>
<td>64</td>
<td>42</td>
<td>420</td>
</tr>
<tr>
<td>W</td>
<td>19.1</td>
<td>185</td>
<td>31</td>
<td>310</td>
</tr>
<tr>
<td>Pb</td>
<td>11.35</td>
<td>207</td>
<td>16</td>
<td>160</td>
</tr>
</tbody>
</table>
Luminosities

- **Instantaneous Luminosity:**
 \[L = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times N_A) / A \]
 \(\Phi_{beam} = 5 \times 10^8 p^+ s^{-1} \), \(\ell = 1 \text{ cm} \) (target thickness)

- **Integrated luminosity**
 \[\int dt L = L \times 10^7(6) s p^+ \text{ (or Pb)} \]

- **Expected luminosities with** \(5 \times 10^8 p^+ s^{-1} \) extracted (1 cm-long target)

<table>
<thead>
<tr>
<th>Target</th>
<th>(\rho) (g.cm(^{-3}))</th>
<th>(A)</th>
<th>(L) ((\mu)b(^{-1}).s(^{-1}))</th>
<th>(\int L) (pb(^{-1}).yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol. H(_2)</td>
<td>0.09</td>
<td>1</td>
<td>26</td>
<td>260</td>
</tr>
<tr>
<td>Liq. H(_2)</td>
<td>0.07</td>
<td>1</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Liq. D(_2)</td>
<td>0.16</td>
<td>2</td>
<td>24</td>
<td>240</td>
</tr>
<tr>
<td>Be</td>
<td>1.85</td>
<td>9</td>
<td>62</td>
<td>620</td>
</tr>
<tr>
<td>Cu</td>
<td>8.96</td>
<td>64</td>
<td>42</td>
<td>420</td>
</tr>
<tr>
<td>W</td>
<td>19.1</td>
<td>185</td>
<td>31</td>
<td>310</td>
</tr>
<tr>
<td>Pb</td>
<td>11.35</td>
<td>207</td>
<td>16</td>
<td>160</td>
</tr>
</tbody>
</table>

- **Using NA51-like 1.2m-long liquid \(H_2 \) & \(D_2 \) targets,** \(L_{H_2/D_2} \approx 20 \text{ fb}^{-1}\text{y}^{-1} \)
Luminosities

- **Instantaneous Luminosity:**
 \[\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times N_A) / A \]
 \[\Phi_{beam} = 5 \times 10^8 \, p^+ \, s^{-1}, \quad \ell = 1 \, \text{cm (target thickness)} \]

- **Integrated luminosity**
 \[\int dt \mathcal{L} = \mathcal{L} \times 10^7(6) \, s \, p^+ \ (\text{or Pb}) \]

- **Expected luminosities with** \(5 \times 10^8 p^+ s^{-1} \) **extracted (1 cm-long target)**

<table>
<thead>
<tr>
<th>Target</th>
<th>(\rho) (g.cm(^{-3}))</th>
<th>(A)</th>
<th>(\mathcal{L}) ((\mu b^{-1}.s^{-1}))</th>
<th>(\int \mathcal{L}) (pb(^{-1}.yr^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol. H(_2)</td>
<td>0.09</td>
<td>1</td>
<td>26</td>
<td>260</td>
</tr>
<tr>
<td>Liq. H(_2)</td>
<td>0.07</td>
<td>1</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Liq. D(_2)</td>
<td>0.16</td>
<td>2</td>
<td>24</td>
<td>240</td>
</tr>
<tr>
<td>Be</td>
<td>1.85</td>
<td>9</td>
<td>62</td>
<td>620</td>
</tr>
<tr>
<td>Cu</td>
<td>8.96</td>
<td>64</td>
<td>42</td>
<td>420</td>
</tr>
<tr>
<td>W</td>
<td>19.1</td>
<td>185</td>
<td>31</td>
<td>310</td>
</tr>
<tr>
<td>Pb</td>
<td>11.35</td>
<td>207</td>
<td>16</td>
<td>160</td>
</tr>
</tbody>
</table>

- **Using NA51-like 1.2m-long liquid H\(_2\) & D\(_2\) targets,** \(\mathcal{L}_{H_2/D_2} \approx 20 \, \text{fb}^{-1} \, \text{y}^{-1} \)
- **Planned lumi for PHENIX Run14pp 12 pb\(^{-1}\) and Run14dAu 0.15 pb\(^{-1}\)**
Luminosities

- **Instantaneous Luminosity:**
 \[\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times N_A) / A \]
 \[\Phi_{beam} = 5 \times 10^8 \text{ } p^+ \text{ s}^{-1}, \quad \ell = 1 \text{ cm (target thickness)} \]

- **Integrated luminosity**
 \[\int dt \mathcal{L} = \mathcal{L} \times 10^7(6) \text{ } s \text{ } p^+ \text{ (or Pb)} \]

- **Expected luminosities with** \(5 \times 10^8 p^+ \text{ s}^{-1} \) **extracted (1cm-long target)**

<table>
<thead>
<tr>
<th>Target</th>
<th>(\rho) (g.cm(^{-3}))</th>
<th>(A)</th>
<th>(\mathcal{L}) ((\mu \text{b}^{-1}.\text{s}^{-1}))</th>
<th>(\int \mathcal{L}) ((\text{pb}^{-1}.\text{yr}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol. H(_2)</td>
<td>0.09</td>
<td>1</td>
<td>26</td>
<td>260</td>
</tr>
<tr>
<td>Liq. H(_2)</td>
<td>0.07</td>
<td>1</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Liq. D(_2)</td>
<td>0.16</td>
<td>2</td>
<td>24</td>
<td>240</td>
</tr>
<tr>
<td>Be</td>
<td>1.85</td>
<td>9</td>
<td>62</td>
<td>620</td>
</tr>
<tr>
<td>Cu</td>
<td>8.96</td>
<td>64</td>
<td>42</td>
<td>420</td>
</tr>
<tr>
<td>W</td>
<td>19.1</td>
<td>185</td>
<td>31</td>
<td>310</td>
</tr>
<tr>
<td>Pb</td>
<td>11.35</td>
<td>207</td>
<td>16</td>
<td>160</td>
</tr>
</tbody>
</table>

- **Using NA51**-like 1.2m-long liquid \(H_2 \) \& \(D_2 \) targets, \(\mathcal{L}_{H_2/D_2} \approx 20 \text{ } \text{fb}^{-1}.\text{yr}^{-1} \)

- **Planned lumi for PHENIX Run14pp 12 \text{pb}^{-1}** and Run14dAu 0.15 \text{pb}^{-1}

- **Lumi for Pb runs in the backup slides**
Beam extraction

Beam extraction @ LHC

... there are extremely promising possibilities to extract 7 TeV protons from the circulating beam by means of a bent crystal.

... The idea is to put a bent, single crystal of either Si or Ge (W would perform slightly better but needs substantial improvements in crystal quality) at a distance of \(\sim 7 \sigma \) to the beam where it can intercept and deflect part of the beam halo by an angle similar to the one the foreseen dump kicking system will apply to the circulating beam.

... ions with the same momentum per charge as protons are deflected in a crystal with similar efficiencies.

If the crystal is positioned at the kicking section, the whole dump system can be used for slow extraction of parts of the beam halo, the particles that are anyway lost subsequently at collimators.
Part II

AFTER: a couple of flagships measurements
Key studies

- **Gluon distribution** at mid, high and ultra-high x_B in the
Key studies

- **Gluon distribution** at mid, high and ultra-high x_B in the proton

![Graph showing gluon distribution for $\mu = 100$ GeV]
Key studies

- **Gluon distribution** at mid, high and ultra-high x_B in the
 - proton

- **neutron** (via deuteron target)
Key studies

- **Gluon distribution** at mid, high and ultra-high x_B in the proton

- **neutron** (via deuteron target)
 unique measurement!
Key studies

- **Gluon distribution** at mid, high and ultra-high x_B in the proton

- **neutron** (via deuteron target) unique measurement!

- nucleus
Key studies

- **Gluon distribution** at mid, high and ultra-high x_B in the proton

- **neutron** (via deuteron target) unique measurement!

- nucleus absolutely complementary with LHeC
Key studies

- Gluon distribution at mid, high and ultra-high x_B in the proton
- neutron (via deuteron target) unique measurement!
- nucleus absolutely complementary with LHeC

with
- quarkonia
Key studies

- **Gluon distribution** at mid, high and ultra-high x_B in the proton

- **neutron** (via deuteron target) unique measurement!

- nucleus absolutely complementary with LHeC

with

- quarkonia

- Isolated photon
Key studies

- **Gluon distribution** at mid, high and ultra-high x_B in the proton

- **neutron** (via deuteron target) unique measurement!

- nucleus absolutely complementary with LHeC

 with
 - quarkonia
 - Isolated photon
 - jets (we should access $P_T \in [20, 40]$ GeV)
Key studies

- Heavy-quark distributions (at high x_B)
Key studies

- **Heavy-quark distributions (at high x_B)**
- Pin down *intrinsic* charm, ... at last

![Graphs showing charm distributions for DGLAP, BHPS, and Sea-like models.](Image)

All 3 compatible with DIS data (Pumplin *et al.*)

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER: A fixed-target experiment at LHC

July 7, 2012
Key studies

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
- Total open charm and beauty cross section (down to $P_T \rightarrow 0$)

All 3 compatible with DIS data (Pumplin et al.)
Key studies

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
- Total open charm and beauty cross section (down to $P_T \to 0$)

This requires

All 3 compatible with DIS data (Pumplin et al.)
Key studies

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
- Total open charm and beauty cross section (down to $P_T \to 0$)

requires

- several complementary measurements

DGLAP

BHPS

Sea-like

All 3 compatible with DIS data (Pumplin et al.)
Key studies

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
- Total open charm and beauty cross section (down to $P_T \rightarrow 0$)

requires

- several complementary measurements
- good coverage in the target-rapidity region

All 3 compatible with DIS data (Pumplin et al.)
Key studies

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
- Total open charm and beauty cross section (down to $P_T \to 0$)

requires

- several complementary measurements
- good coverage in the target-rapidity region
- high luminosity to reach large x_B

All 3 compatible with DIS data (Pumplin et al.)
Key studies

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
Key studies

- Gluon Sivers effect: correlation between the gluon transverse momentum & the proton spin
- Transverse single spin asymmetries using gluon sensitive probes

<table>
<thead>
<tr>
<th>Fx</th>
<th>0.15</th>
<th>0.1</th>
<th>0.05</th>
<th>0</th>
<th>0.05</th>
<th>0.1</th>
<th>0.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>-0.2</td>
<td>-0.15</td>
<td>-0.1</td>
<td>-0.05</td>
<td>0</td>
<td>0.05</td>
<td>0.1</td>
</tr>
</tbody>
</table>

= 200 GeV

+X at ψ J/→p+p

>=1.6 GeV/c (side points)

T<p

>=1.5 GeV/c (middle point)

2006

2008

2006+2008

B & D meson production

the target-rapidity region corresponds to high x↑ where the kT-spin correlation is the largest

In general, one can carry out an extensive spin-physics program

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER: A fixed-target experiment at LHC

July 7, 2012
Key studies

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- Transverse single spin asymmetries using gluon sensitive probes
- Quarkonia (J/ψ, Υ, χ_c, ...)

![Graph showing A_N vs. x_F with data points for different dilepton masses: $<p_T>$=1.6 GeV/c (side points), $<p_T>$=1.5 GeV/c (middle point), 2006, 2008, and 2006+2008.](image)
Key studies

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin

- Transverse single spin asymmetries using gluon sensitive probes

- Quarkonia (J/ψ, Υ, χ_c, …)

- B & D meson production
Key studies

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- **Transverse single spin asymmetries** using gluon sensitive probes

- **quarkonia** \((J/\psi, \Upsilon, \chi_c, \ldots)\)
- **\(B\) & \(D\) meson production**
- **\(\gamma\) and \(\gamma\)-jet**

Key studies

- **Gluon Sivers effect:** correlation between the gluon transverse momentum & the proton spin
- **Transverse single spin asymmetries** using gluon sensitive probes

- **quarkonia** \((J/\psi, \ Upsilon, \ \chi_c, \ldots)\)

- **B & D meson production**

- **\(\gamma\) and \(\gamma\)-jet**

- The target-rapidity region corresponds to high \(x^\uparrow\) where the \(k_T\)-spin correlation is the largest

\[F_x = -0.15 \quad -0.1 \quad -0.05 \quad 0 \quad 0.05 \quad 0.1 \quad 0.15\]

\[N_A = -0.2 \quad -0.15 \quad -0.1 \quad -0.05 \quad -0 \quad 0.05 \quad 0.1 \quad 0.15 \quad 0.2\]

\[p+p \rightarrow J/\psi + X \text{ at } \sqrt{s} = 200 \text{ GeV}\]

\(\langle p_T \rangle = 1.6 \text{ GeV/c (side points)}\)

\(\langle p_T \rangle = 1.5 \text{ GeV/c (middle point)}\)

\[A_N\]

Key studies

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- **Transverse single spin asymmetries** using gluon sensitive probes
- **Quarkonia** (J/ψ, Υ, χ_c, \ldots)
- **B & D meson production**
- **γ and γ-jet**
- The target-rapidity region corresponds to high x^\uparrow where the k_T-spin correlation is the largest

Key studies

- For the first time, one would study W/Z production in their threshold region.
Key studies

- For the first time, one would study W/Z production in their threshold region.
- Unique opportunity to measure QCD/threshold effects on W/Z production.

If W'/Z' exist, their production may share similar threshold corrections as that of W/Z, but at LHC energies. Reconstructed rates are most likely between a few dozen to a few thousand per year.

Multiply heavy baryons: discovery potential? ($\Omega^{++}(cc)$, ...).

Very forward (backward) physics: semi-diffractive events, ultra-peripheral collisions, etc.
Key studies

- For the first time, one would study W/Z production in their threshold region.
- Unique opportunity to measure QCD/threshold effects on W/Z production.
- If W'/Z' exist, their production may share similar threshold corrections as that of W/Z, but at LHC energies.
Key studies

- For the first time, one would study W/Z production in their threshold region.
- Unique opportunity to measure QCD/threshold effects on W/Z production.
- If W'/Z' exist, their production may share similar threshold corrections as that of W/Z, but at LHC energies.
- Reconstructed rate are most likely between a few dozen to a few thousand / year.
Key studies

- For the first time, one would study W/Z production in their threshold region.
- Unique opportunity to measure QCD/threshold effects on W/Z production.
- If W'/Z' exist, their production may share similar threshold corrections as that of W/Z, but at LHC energies.
- Reconstructed rate are most likely between a few dozen to a few thousand / year.
- Multiply heavy baryons: discovery potential? ($\Omega^{++}(ccc)$, ...)
- Very forward (backward) physics:
 - semi-diffractive events
 - Ultra-peripheral collisions, etc.
Overall

Log (x^{-1})

Fixed Target @ LHC

x \leq 1 \ x \rightarrow 1

Non perturbative regime

EMC effect

Nuclear fermi motion

Dilute system

DGLAP

BFKL

saturation

Q^2 = Q^2_s(x)

BK-JIMWLK

saturation

log (x-1)

log (Q^2)

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER: A fixed-target experiment at LHC

July 7, 2012
Overall

Fixed Target @ LHC

- Non perturbative regime
- DGLAP
- BFKL
- BK-JIMWLK
- Drell-Yan
- EMC effect
- Nuclear fermi motion

$x \rightarrow 1$ $x \rightarrow 1$

$log (Q^2)$

$log (x^{-1})$
Fixed Target @ LHC

- **Non perturbative regime**
 - $x > 1$
 - $x \rightarrow 1$

- **Dilute system**
 - **BK-JIMWLK**
 - **DGLAP**

- **Fixed Target@LHC**

- **Quarkonia**

- **Drell-Yan**

- **EMC effect**

- **Nuclear fermi motion**

- **$Q^2 = Q^2_s(x)$**

- **$\log (x^{-1})$**

- **$\log (Q^2)$**

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER: A fixed-target experiment at LHC

July 7, 2012 13 / 18
Overall

\[\log(x^{-1}) \quad \text{Fixed Target @ LHC} \]

- Non perturbative regime
- Fixed Target @ LHC
- $x > 1 \rightarrow x \rightarrow 1$
- $Q^2 = Q^2_s(x)$
- Saturation
- BK-JIMWLK
- Dilute system
- Drell-Yan
- Quarkonia
- EMC effect
- Nuclear fermi motion
- W/Z

J.P. Lansberg (IPNO, Paris-Sud U.)
AFTER: A fixed-target experiment at LHC
July 7, 2012
Overall

Fixed Target @ LHC

log (x⁻¹)

log (Q²)

Non perturbative regime

Quarkonia

High-p_T jet

W/Z

Dillute system

DGLAP

BFKL

saturation

BK-JIMWLK

Drell-Yan

Nuclear fermi motion

EMC effect

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER: A fixed-target experiment at LHC

July 7, 2012
Physics Opportunities of a Fixed-Target Experiment using the LHC Beams

S.J. Brodsky1, F. Fleuret2, C. Hadjidakis3, J.P. Lansberg3

1SLAC National Accelerator Laboratory, Theoretical Physics, Stanford University, Menlo Park, California 94025, USA
2Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France
3IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Abstract

We outline the many physics opportunities offered by a multi-purpose fixed-target experiment using the proton and lead-ion beams of the LHC extracted by a bent crystal. In a proton run with the LHC 7-TeV beam, one can analyze pp, pd and pA collisions at center-of-mass energy $\sqrt{s_{NN}} \approx 115$ GeV and even higher using the Fermi-motion of the nucleons in a nuclear target. In a lead run with a 2.76 TeV-per-nucleon beam, $\sqrt{s_{NN}}$ is as high as 72 GeV. Bent crystals can be used to extract about 5×10^8 protons/sec; the integrated luminosity over a year would reach 0.5 fb$^{-1}$ on a typical 1 cm-long target without nuclear species limitation. We emphasize that such an extraction mode does not alter the performance of the collider experiments at the LHC. By instrumenting the target-rapidity region, gluon and heavy-quark distributions of the proton and the neutron can be accessed at large x and even at x larger than unity in the nuclear case. Single diffractive physics and, for the first time, the large negative-x_F domain can be accessed. The nuclear target-species versatility provides a unique opportunity to study nuclear matter versus the features of the hot and dense matter formed in heavy-ion collisions, including the formation of the Quark-Gluon Plasma (QGP), which can be studied in PbA collisions over the full range of target rapidities with a large variety of nuclei. The polarization of hydrogen and nuclear targets allows an ambitious spin program, including measurements of the QCD lensing effects which underlie the Sivers single-spin asymmetry, the study of transversity distributions and possibly of polarized parton distributions. We also emphasize the potential offered by pA ultra-peripheral collisions where the nucleus target A is used as a coherent photon source, mimicking photoproduction processes in ep collisions. Finally, we note that W and Z bosons can be produced and detected in a fixed-target experiment and in their threshold domain for the first time, providing new ways to probe the partonic content of the proton and the nucleus.

Keywords: LHC beam, fixed-target experiment
Contents

1 Introduction ... 3

2 Key numbers and features 4

3 Nucleon partonic structure 5
 3.1 Drell-Yan ... 5
 3.2 Gluons in the proton at large x 5
 3.2.1 Quarkonia 5
 3.2.2 Jets ... 7
 3.2.3 Direct/isolated photons 7
 3.3 Gluons in the deuteron and in the neutron 7
 3.4 Charm and bottom in the proton 7
 3.4.1 Open-charm production 7
 3.4.2 $J/\psi + D$ meson production 8
 3.4.3 Heavy-quark plus photon 8

4 Spin physics .. 8
 4.1 Transverse SSA and DY 8
 4.2 Quarkonium and heavy-quark transverse SSA 9
 4.3 Transverse SSA and photon 9
 4.4 Spin Asymmetries with a final state polarization 9

5 Nuclear matter ... 10
 5.1 Quark nPDF: Drell-Yan in pA and PbP 10
 5.2 Gluon nPDF 10
 5.2.1 Isolated photons and photon-jet correlations 10
 5.2.2 Precision quarkonium and heavy-flavour studies 10
 5.3 Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus 11
7 \textbf{W and Z boson production in } pp, pd \textbf{ and } pA \textbf{ collisions} \hfill 13
 7.1 First measurements in pA \hfill 13
 7.2 W/Z production in pp and pd \hfill 13

8 \textbf{Exclusive, semi-exclusive and backward reactions} \hfill 14
 8.1 Ultra-peripheral collisions \hfill 14
 8.2 Hard diffractive reactions \hfill 14
 8.3 Heavy-hadron (diffractive) production at } x_F \rightarrow -1 \hfill 14
 8.4 Very backward physics \hfill 15
 8.5 Direct hadron production \hfill 15

9 \textbf{Further potentialities of a high-energy fixed-target set-up} \hfill 15
 9.1 D and B physics \hfill 15
 9.2 Secondary beams \hfill 15
 9.3 Forward studies in relation with cosmic shower \hfill 15

10 \textbf{Conclusions} \hfill 15
Part III

Conclusion and outlooks
Conclusion

Both \(p \) and \(Pb \) LHC beams can be extracted without disturbing the other experiments.

Extracting a few per cent of the beam \(\rightarrow 5 \times 10^8 \) protons per sec allows for high luminosity \(pp, pA, \) and \(PbA \) collisions at \(\sqrt{s} = 115 \text{ GeV} \) and \(\sqrt{s_{NN}} = 72 \text{ GeV} \).

Example: precision quarkonium studies taking advantage of high luminosity (reach in \(y, P_T, \) small BR channels) target versatility (nuclear effects, strongly limited at colliders) modern detection techniques (e.g. \(\gamma \) detection with high multiplicity).

This would likely prepare the ground for \(g(x, Q^2) \) extraction.

A wealth of possible measurements: \(DY, \) Open \(b/c, \) jet correlation, UPC...

(Not mentioning secondary beams)

Planned LHC long shutdown (<2020 ?) could be used to install the extraction system.

Very good complementarity with electron-ion programs.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.

- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec

Example: precision quarkonium studies taking advantage of high luminosity (reach in y, P_T, small BR channels) target versatility (nuclear effects, strongly limited at colliders) modern detection techniques (e.g. γ detection with high multiplicity)

This would likely prepare the ground for $g(x, Q^2)$ extraction.

A wealth of possible measurements: DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)

Planned LHC long shutdown (< 2020 ?) could be used to install the extraction system.

Very good complementarity with electron-ion programs.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
Both p and Pb LHC beams can be extracted without disturbing the other experiments.

Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.

This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.

Example: precision quarkonium studies taking advantage of...
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam → 5×10^8 protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- **Example**: precision quarkonium studies taking advantage of:
 - high luminosity (reach in y, P_T, small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- **Example:** precision quarkonium studies taking advantage of:
 - high luminosity (reach in γ, P_T, small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- **Example**: precision quarkonium studies taking advantage of:
 - high luminosity (reach in y, P_T, small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction.
- A wealth of possible measurements: DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams).

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER: A fixed-target experiment at LHC

July 7, 2012 17 / 18
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- **Example**: precision quarkonium studies taking advantage of:
 - high luminosity (reach in y, P_T, small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction.
- A wealth of possible measurements: DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams).
- Planned LHC long shutdown (< 2020 ?) could be used to install the extraction system.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam → 5×10^8 protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- Example: precision quarkonium studies taking advantage of:
 - high luminosity (reach in y, P_T, small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction.
- A wealth of possible measurements:
 - DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)
- Planned LHC long shutdown (< 2020 ?) could be used to install the extraction system.
- Very good complementarity with electron-ion programs.
Outlooks

- First letter of physics on arXiv (1202.6585)
Outlooks

- First letter of physics on arXiv (1202.6585)
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop will be held at ECT* Trento, February 4-13, 2013

Do not hesitate to contact us

Webpage:
Outlooks

- First letter of physics on arXiv (1202.6585)
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop will be held at ECT* Trento, February 4-13, 2013
- We are looking for more experimentalist partners to start
Outlooks

- First letter of physics on arXiv (1202.6585)
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop will be held at ECT* Trento, February 4-13, 2013
- We are looking for more experimentalist partners to start
 - doing first simulations
Outlooks

- First letter of physics on arXiv (1202.6585)
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop will be held at ECT* Trento, February 4-13, 2013
- We are looking for more experimentalist partners to start
 - doing first simulations
 - thinking about possible designs
Outlooks

- First letter of physics on arXiv (1202.6585)
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop will be held at ECT* Trento, February 4-13, 2013
- We are looking for more experimentalist partners to start
 - doing first simulations
 - thinking about possible designs
 - thinking about the optimal detector technologies

Theorist colleagues are encouraged to think about additional ideas of physics

First paper on AFTER: T. Liu, B.Q. Ma, EPJC (2012) 72:2037

Do not hesitate to contact us

Webpage:
Outlooks

- First letter of physics on arXiv (1202.6585)
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop will be held at ECT* Trento, February 4-13, 2013
- We are looking for more experimentalist partners to start
 - doing first simulations
 - thinking about possible designs
 - thinking about the optimal detector technologies
- Theorist colleagues are encouraged to think about additional ideas of physics
Outlooks

- First letter of physics on arXiv (1202.6585)
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop will be held at ECT* Trento, February 4-13, 2013
- We are looking for more experimentalist partners to start
 - doing first simulations
 - thinking about possible designs
 - thinking about the optimal detector technologies
- Theorist colleagues are encouraged to think about additional ideas of physics

- Do not hesitate to contact us

First letter of physics on arXiv (1202.6585)
3 small meetings already organised over the last 12 months
A 10-day exploratory workshop will be held at ECT* Trento, February 4-13, 2013
We are looking for more experimentalist partners to start
 - doing first simulations
 - thinking about possible designs
 - thinking about the optimal detector technologies
Theorist colleagues are encouraged to think about additional ideas of physics
Do not hesitate to contact us
Part IV

Backup slides
Luminosities

- Instantaneous Luminosity:
 \[\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times N_A) / A \]
 \[\Phi_{beam} = 2 \times 10^5 \text{ Pb s}^{-1}, \quad \ell = 1 \text{ cm (target thickness)} \]

- Integrated luminosity \(\int dt \mathcal{L} = \mathcal{L} \times 10^6 \text{ s for Pb} \)

- Expected luminosities with \(2 \times 10^5 \text{ Pb s}^{-1} \) extracted (1cm-long target)

<table>
<thead>
<tr>
<th>Target</th>
<th>(\rho) (g.cm(^{-3}))</th>
<th>A</th>
<th>(\mathcal{L}) (mb(^{-1}).s(^{-1})) = (\int \mathcal{L}) (nb(^{-1}).yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol. H(_2)</td>
<td>0.09</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Liq. H(_2)</td>
<td>0.07</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Liq. D(_2)</td>
<td>0.16</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Be</td>
<td>1.85</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>Cu</td>
<td>8.96</td>
<td>64</td>
<td>17</td>
</tr>
<tr>
<td>W</td>
<td>19.1</td>
<td>185</td>
<td>13</td>
</tr>
<tr>
<td>Pb</td>
<td>11.35</td>
<td>207</td>
<td>7</td>
</tr>
</tbody>
</table>

- Planned lumi for PHENIX Run15AuAu 2.8 nb\(^{-1}\) (0.13 nb\(^{-1}\) at 62 GeV)
- Nominal LHC lumi for PbPb 0.5 nb\(^{-1}\)
A Fixed Target Experiment: e.g. a quarkonium observatory in pp

Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int L , (fb^{-1} \cdot yr^{-1})$</th>
<th>$N(J/\Psi) , yr^{-1}$</th>
<th>$N(\Upsilon) , yr^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H_2</td>
<td>20</td>
<td>4.0×10^8</td>
<td>8.0×10^5</td>
</tr>
<tr>
<td>1 m Liq. D_2</td>
<td>24</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
<tr>
<td>LHC pp 14 Tev (low pT)</td>
<td>0.05 (ALICE) 2 LHCb</td>
<td>3.6×10^7</td>
<td>1.8×10^5</td>
</tr>
<tr>
<td>RHIC pp 200GeV</td>
<td>1.2×10^{-2}</td>
<td>4.8×10^5</td>
<td>1.2×10^3</td>
</tr>
</tbody>
</table>

Numbers are for only one unit of y about 0

Unique access in the backward region

Probe of the (very) large x in the target

1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
A Fixed Target Experiment: e.g. a quarkonium observatory in pp

- Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int L$ (fb⁻¹ yr⁻¹)</th>
<th>$N(J/\Psi)$ yr⁻¹</th>
<th>$N(\Upsilon)$ yr⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H₂</td>
<td>20</td>
<td>4.0×10^8</td>
<td>8.0×10^5</td>
</tr>
<tr>
<td>1 m Liq. D₂</td>
<td>24</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
<tr>
<td>LHC pp 14 Tev (low pT)</td>
<td>0.05 (ALICE)</td>
<td>3.6×10^7</td>
<td>1.8×10^5</td>
</tr>
<tr>
<td></td>
<td>2 LHCb</td>
<td>1.4×10^9</td>
<td>7.2×10^6</td>
</tr>
<tr>
<td>RHIC pp 200 GeV</td>
<td>1.2×10^{-2}</td>
<td>4.8×10^5</td>
<td>1.2×10^3</td>
</tr>
</tbody>
</table>

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
A Fixed Target Experiment: e.g. a quarkonium observatory in pp

- Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int \mathcal{L}$ (fb$^{-1}$yr$^{-1}$)</th>
<th>$N(J/\Psi)$ yr$^{-1}$</th>
<th>$N(\Upsilon)$ yr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H$_2$</td>
<td>20</td>
<td>4.0 10^8</td>
<td>8.0 10^5</td>
</tr>
<tr>
<td>1 m Liq. D$_2$</td>
<td>24</td>
<td>9.6 10^8</td>
<td>1.9 10^6</td>
</tr>
<tr>
<td>LHC pp 14 Tev (low pT)</td>
<td>0.05 (ALICE)</td>
<td>3.6 10^7</td>
<td>1.8 10^5</td>
</tr>
<tr>
<td></td>
<td>2 LHCb</td>
<td>1.4 10^9</td>
<td>7.2 10^6</td>
</tr>
<tr>
<td>RHIC pp 200GeV</td>
<td>1.2 10^{-2}</td>
<td>4.8 10^5</td>
<td>1.2 10^3</td>
</tr>
</tbody>
</table>

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of y about 0
A Fixed Target Experiment: e.g. a quarkonium observatory in pp

Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int L$ (fb$^{-1}$yr$^{-1}$)</th>
<th>$N(J/\Psi)$ yr$^{-1}$</th>
<th>$N(\Upsilon)$ yr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H$_2$</td>
<td>20</td>
<td>4.0×10^8</td>
<td>8.0×10^5</td>
</tr>
<tr>
<td>1 m Liq. D$_2$</td>
<td>24</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
<tr>
<td>LHC pp 14 TeV</td>
<td>0.05 (ALICE)</td>
<td>3.6×10^7</td>
<td>1.8×10^5</td>
</tr>
<tr>
<td></td>
<td>2 LHCb</td>
<td>1.4×10^9</td>
<td>7.2×10^6</td>
</tr>
<tr>
<td>RHIC pp 200GeV</td>
<td>1.2×10^{-2}</td>
<td>4.8×10^5</td>
<td>1.2×10^3</td>
</tr>
</tbody>
</table>

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of y about 0
- Unique access in the backward region
A Fixed Target Experiment: e.g. a quarkonium observatory in \textit{pp}

- Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int \mathcal{L} \ (\text{fb}^{-1}.\text{yr}^{-1})$</th>
<th>$N(J/\Psi) \ \text{yr}^{-1}$</th>
<th>$N(\Upsilon) \ \text{yr}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H$_2$</td>
<td>20</td>
<td>4.0×10^8</td>
<td>8.0×10^5</td>
</tr>
<tr>
<td>1 m Liq. D$_2$</td>
<td>24</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
<tr>
<td>LHC pp 14 Tev</td>
<td>0.05 (ALICE)</td>
<td>3.6×10^7</td>
<td>1.8×10^5</td>
</tr>
<tr>
<td></td>
<td>2 LHCb</td>
<td>1.4×10^9</td>
<td>7.2×10^6</td>
</tr>
<tr>
<td>RHIC pp 200 GeV</td>
<td>1.2×10^{-2}</td>
<td>4.8×10^5</td>
<td>1.2×10^3</td>
</tr>
</tbody>
</table>

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of y about 0
- Unique access in the backward region
- Probe of the (very) large x in the target
AFTER: also a quarkonium observatory in pA

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>(\int L (fb^{-1}.yr^{-1}))</th>
<th>(N(J/\Psi) \text{ yr}^{-1})</th>
<th>(N(\Upsilon) \text{ yr}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1 (10^8)</td>
<td>2.2 (10^5)</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3 (10^8)</td>
<td>1.1 (10^6)</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1 (10^9)</td>
<td>2.3 (10^6)</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7 (10^8)</td>
<td>1.3 (10^6)</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>(10^{-4})</td>
<td>1.0 (10^7)</td>
<td>7.5 (10^4)</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>1.5 (10^{-4})</td>
<td>2.4 (10^6)</td>
<td>5.9 (10^3)</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>3.8 (10^{-6})</td>
<td>1.2 (10^4)</td>
<td>18</td>
</tr>
</tbody>
</table>

In principle, one can get 300 times more \(J/\psi\) –not counting the likely wider \(\Upsilon\) coverage— than at RHIC, allowing for
AFTER: also a quarkonium observatory in pA

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>$\int L$ (fb$^{-1}.yr^{-1}$)</th>
<th>$N(J/\Psi)$ yr$^{-1}$</th>
<th>$N(\Upsilon)$ yr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1 10^8</td>
<td>2.2 10^5</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3 10^8</td>
<td>1.1 10^6</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1 10^9</td>
<td>2.3 10^6</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7 10^8</td>
<td>1.3 10^6</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>10^{-4}</td>
<td>1.0 10^7</td>
<td>7.5 10^4</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>1.5 10^{-4}</td>
<td>2.4 10^6</td>
<td>5.9 10^3</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>3.8 10^{-6}</td>
<td>1.2 10^4</td>
<td>18</td>
</tr>
</tbody>
</table>

- In principle, one can get **300 times more J/Ψ** – not counting the likely wider γ coverage – than at RHIC, allowing for
 - χ_c measurement in pA via $J/\Psi + \gamma$ (extending Hera-B studies)
AFTER: also a quarkonium observatory in pA

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>$\int L (fb^{-1}.yr^{-1})$</th>
<th>$N(J/\Psi) \text{ yr}^{-1}$</th>
<th>$N(\Upsilon) \text{ yr}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1 10^8</td>
<td>2.2 10^5</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3 10^8</td>
<td>1.1 10^6</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1 10^9</td>
<td>2.3 10^6</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7 10^8</td>
<td>1.3 10^6</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>10^{-4}</td>
<td>1.0 10^7</td>
<td>7.5 10^4</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>1.5 10^{-4}</td>
<td>2.4 10^6</td>
<td>5.9 10^3</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>3.8 10^{-6}</td>
<td>1.2 10^4</td>
<td>18</td>
</tr>
</tbody>
</table>

- In principle, one can get **300 times more** J/ψ – not counting the likely wider y coverage – than at RHIC, allowing for
 - χ_c measurement in pA via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T
AFTER: also a quarkonium observatory in $p\Lambda$

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>$\int \mathcal{L} (\text{fb}^{-1}\cdot\text{yr}^{-1})$</th>
<th>$N(J/\Psi)$ yr$^{-1}$</th>
<th>$N(\Upsilon)$ yr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1×10^8</td>
<td>2.2×10^5</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3×10^8</td>
<td>1.1×10^6</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1×10^9</td>
<td>2.3×10^6</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7×10^8</td>
<td>1.3×10^6</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>10^{-4}</td>
<td>1.0×10^7</td>
<td>7.5×10^4</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>1.5×10^{-4}</td>
<td>2.4×10^6</td>
<td>5.9×10^3</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>3.8×10^{-6}</td>
<td>1.2×10^4</td>
<td>18</td>
</tr>
</tbody>
</table>

- In principle, one can get **300 times more J/ψ**—not counting the likely wider γ coverage—than at RHIC, allowing for:
 - χ_c measurement in $p\Lambda$ via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, γ or P_T
 - Ratio ψ' over direct J/ψ measurement in $p\Lambda$
AFTER: also a quarkonium observatory in pA

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>$\int L\ (fb^{-1}.yr^{-1})$</th>
<th>$N(J/\Psi)\ yr^{-1}$</th>
<th>$N(\Upsilon)\ yr^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1×10^8</td>
<td>2.2×10^5</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3×10^8</td>
<td>1.1×10^6</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1×10^9</td>
<td>2.3×10^6</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7×10^8</td>
<td>1.3×10^6</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>10^{-4}</td>
<td>1.0×10^7</td>
<td>7.5×10^4</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>1.5×10^{-4}</td>
<td>2.4×10^6</td>
<td>5.9×10^3</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>3.8×10^{-6}</td>
<td>1.2×10^4</td>
<td>18</td>
</tr>
</tbody>
</table>

- In principle, one can get **300 times more** J/ψ –not counting the likely wider y coverage– than at RHIC, allowing for
 - χ_c measurement in pA via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T
 - Ratio ψ' over direct J/ψ measurement in pA
 - not to mention ratio with **open charm, Drell-Yan**, etc ...
AFTER: also a quarkonium observatory in pA

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>$\int L \ (fb^{-1}.yr^{-1})$</th>
<th>$N(J/\Psi) \ yr^{-1}$</th>
<th>$N(\Upsilon) \ yr^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1 10^8</td>
<td>2.2 10^5</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3 10^8</td>
<td>1.1 10^6</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1 10^9</td>
<td>2.3 10^6</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7 10^8</td>
<td>1.3 10^6</td>
</tr>
<tr>
<td>LHC pPb</td>
<td>207</td>
<td>10^{-4}</td>
<td>1.0 10^7</td>
<td>7.5 10^4</td>
</tr>
<tr>
<td>RHIC dAu</td>
<td>198</td>
<td>1.5×10^{-4}</td>
<td>2.4 10^6</td>
<td>5.9 10^3</td>
</tr>
<tr>
<td>RHIC dAu</td>
<td>198</td>
<td>3.8×10^{-6}</td>
<td>1.2 10^4</td>
<td>18</td>
</tr>
</tbody>
</table>

In principle, one can get **300 times more J/ψ** —not counting the likely wider y coverage— than at RHIC, allowing for

- χ_c measurement in pA via $J/\psi + \gamma$ (extending Hera-B studies)
- Polarisation measurement as the centrality, y or P_T
- Ratio ψ' over direct J/ψ measurement in pA
- not to mention ratio with **open charm, Drell-Yan**, etc ...
- Remember that we can change A ...
AFTER: also an heavy-flavour observatory in \textit{PbA}

- Luminosities and yields with the extracted 2.76 TeV Pb beam ($\sqrt{s_{NN}} = 72$ GeV)

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>$\int L$ (nb$^{-1}$ yr$^{-1}$)</th>
<th>$N(J/\Psi)$ yr$^{-1}$ = $ABLB\sigma_{\Psi}$</th>
<th>$N(\Upsilon)$ yr$^{-1}$ = $ABLB\sigma_{\Upsilon}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H$_2$</td>
<td>207.1</td>
<td>800</td>
<td>3.4×10^6</td>
<td>6.9×10^3</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>9.1×10^5</td>
<td>1.9×10^3</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>4.3×10^6</td>
<td>0.9×10^3</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>9.7×10^6</td>
<td>1.9×10^4</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>5.7×10^6</td>
<td>1.1×10^4</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>7.3×10^6</td>
<td>3.6×10^4</td>
</tr>
<tr>
<td>RHIC AuAu 200 GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>4.4×10^6</td>
<td>1.1×10^4</td>
</tr>
<tr>
<td>RHIC AuAu 62 GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>4.0×10^4</td>
<td>61</td>
</tr>
</tbody>
</table>

Yields similar those of RHIC at 200 GeV and LHC at 5.5 TeV, 100 times those of RHIC at 62 GeV

Also very competitive compared to the LHC.
AFTER: also an heavy-flavour observatory in \(PbA\)

- Luminosities and yields with the extracted 2.76 TeV Pb beam
 \(\sqrt{s_{NN}} = 72\) GeV

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>(\int L) (nb(^{-1}).yr(^{-1}))</th>
<th>(N(J/\Psi)) yr(^{-1}) = (ABLB\sigma_{\Psi})</th>
<th>(N(\Upsilon)) yr(^{-1}) = (ABLB\sigma_{\Upsilon})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H(_2)</td>
<td>207.1</td>
<td>800</td>
<td>3.4 (10^6)</td>
<td>6.9 (10^3)</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>9.1 (10^5)</td>
<td>1.9 (10^3)</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>4.3 (10^6)</td>
<td>0.9 (10^3)</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>9.7 (10^6)</td>
<td>1.9 (10^4)</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>5.7 (10^6)</td>
<td>1.1 (10^4)</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>7.3 (10^6)</td>
<td>3.6 (10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 200GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>4.4 (10^6)</td>
<td>1.1 (10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 62GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>4.0 (10^4)</td>
<td>61</td>
</tr>
</tbody>
</table>

Yields similar those of RHIC at 200 GeV and LHC at 5.5 TeV, 100 times those of RHIC at 62 GeV
AFTER: also an heavy-flavour observatory in \(\text{PbA} \)

- Luminosities and yields with the extracted 2.76 TeV Pb beam
 \(\left(\sqrt{s_{\text{NN}}} = 72 \text{ GeV} \right) \)

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>(\int \mathcal{L}) (nb(^{-1}).yr(^{-1}))</th>
<th>(N(J/\Psi)) yr(^{-1})</th>
<th>(N(\Upsilon)) yr(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. (\text{H}_2)</td>
<td>207.1</td>
<td>800</td>
<td>3.4 (10^6)</td>
<td>6.9 (10^3)</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>9.1 (10^5)</td>
<td>1.9 (10^3)</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>4.3 (10^6)</td>
<td>0.9 (10^3)</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>9.7 (10^6)</td>
<td>1.9 (10^4)</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>5.7 (10^6)</td>
<td>1.1 (10^4)</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>7.3 (10^6)</td>
<td>3.6 (10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 200GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>4.4 (10^6)</td>
<td>1.1 (10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 62GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>4.0 (10^4)</td>
<td>61</td>
</tr>
</tbody>
</table>

- Yields similar those of RHIC at 200 GeV and LHC at 5.5 TeV, 100 times those of RHIC at 62 GeV
- Also very competitive compared to the LHC.
AFTER: also an heavy-flavour observatory in PbA

- Luminosities and yields with the extracted 2.76 TeV Pb beam ($\sqrt{s_{NN}} = 72$ GeV)

<table>
<thead>
<tr>
<th>Target</th>
<th>$A.B \int L$ (nb$^{-1}$.yr$^{-1}$)</th>
<th>$N(J/\Psi)$ yr$^{-1}$ = $ABLB\sigma_{\Psi}$</th>
<th>$N(\Upsilon)$ yr$^{-1}$ = $ABLB\sigma_{\Upsilon}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H$_2$</td>
<td>207.1</td>
<td>800</td>
<td>3.4 10^6</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>9.1 10^5</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>4.3 10^6</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>9.7 10^6</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>5.7 10^6</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>7.3 10^6</td>
</tr>
<tr>
<td>RHIC AuAu 200GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>4.4 10^6</td>
</tr>
<tr>
<td>RHIC AuAu 62GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>4.0 10^4</td>
</tr>
</tbody>
</table>

- Yields similar those of RHIC at 200 GeV and LHC at 5.5 TeV, 100 times those of RHIC at 62 GeV
- Also very competitive compared to the LHC.

The same picture also holds for open heavy flavour
Accessing the large x glue

PYTHIA simulation
\[\sigma(y) / \sigma(y=0.4) \]
statistics for one month
5% acceptance considered

Statistical relative uncertainty
Large statistics allow to access very backward region

Gluon uncertainty from MSTWPDF
- only for the gluon content of the target
- assuming
\[x_g = \frac{M_{J/\Psi}}{\sqrt{s}} e^{-y_{CM}} \]

\(J/\Psi \)
\[y_{CM} \sim 0 \rightarrow x_g = 0.03 \]
\[y_{CM} \sim -3.6 \rightarrow x_g = 1 \]

\(Y \): larger x_g for same y_{CM}
\[y_{CM} \sim 0 \rightarrow x_g = 0.08 \]
\[y_{CM} \sim -2.4 \rightarrow x_g = 1 \]

⇒ Backward measurements allow to access large x gluon pdf