

Giulia Casarosa

SLAC National Accelerator Laboratory
INFN & Università di Pisa

on behalf of the BaBar Collaboration

outline

- → Mixing and *CP* Violation (CPV) in the Charm Sector
- → Search for *direct* CP Violation:
 - D⁺ \rightarrow K_SK⁺, D_S⁺ \rightarrow K_SK⁺, D_S⁺ \rightarrow K_S π ⁺ analysis
 - D⁺ \rightarrow K⁺K⁻ π ⁺ analysis
- → $D^0 \overline{D^0}$ Mixing and search for *indirect* CP Violation:
 - $D^0 \rightarrow K^+K^-, \pi^+\pi^-/D^0 \rightarrow K^{\pm}\pi^{\mp}$ lifetime ratio analysis
- → Conclusions

NOTE: charge conjugation is implied from now on

Flavour Mixing and CPV in the Charm Sector

mass eigenstates ≠ flavour eigenstates

$$|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D}^0\rangle$$

 $m_{1,2}$ and $\Gamma_{1,2}$ are mass and width of $|D_{1,2}\rangle$ and $\Gamma_D = (\Gamma_1 + \Gamma_2)/2$

Mixing Parameters

$$x = \frac{m_1 - m_2}{\Gamma_D} \qquad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma_D}$$

NOTE: $|\mathbf{p}|^2 + |\mathbf{q}|^2 = 1$ (CPT conserved), $CP |D^0\rangle = + |\overline{D}^0\rangle$

• long-distance contributions: dominant but affected by large theory uncertainties

 short-distance contributions: GIM and CKM suppressed in SM

$$A_D^f = \frac{|A_f/\bar{A}_f|^2 - |\bar{A}_{\bar{f}}/A_{\bar{f}}|^2}{|A_f/\bar{A}_f|^2 + |\bar{A}_{\bar{f}}/A_{\bar{f}}|^2}$$

 $A_f = \langle D^0 \mid \mathcal{H} \mid f \rangle$

 $A_{\bar{f}} = \langle D^0 \mid \mathcal{H} \mid \bar{f} \rangle$

 $\bar{A}_f = \langle \ \bar{D}^0 \mid \mathcal{H} \mid f \ \rangle$

 $\bar{A}_{\bar{f}} = \langle \ \bar{D}^0 \mid \mathcal{H} \mid \bar{f} \ \rangle$

CPV in the interference, $\phi_f \neq 0$

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} = \left| \frac{q}{p} \frac{\bar{A}_f}{A_f} \right| \exp\left[i(\delta_f + \phi_f)\right]$$

CPV in mixing, $A_{M} \neq 0$

 $A_M = \frac{R_M^2 - R_M^{-2}}{R_M^2 + R_M^{-2}}, \quad R_M = \left| \frac{q}{p} \right|$

Experimental Status

• mixing in the D^0 system is well established, significance ${\sim}10\sigma$

• Standard Model (SM) predictions affected by large uncertainties: x^{theo} , $y^{\text{theo}} \sim o(10^{-2} - 10^{-7})$ [IJMP A21, 5686 (2006)]

• measurements of x and y are at the upper limit of SM, New Physics (NP) may contribute in short-distance diagrams;

[http://www.slac.stanford.edu/xorg/hfag/charm/index.html]

CPV

• the first evidence of CPV in the charm sector:

LHCb: $A_{CP}(D^0 \to KK) - A_{CP}(D^0 \to \pi\pi) = (-0.82 \pm 0.21^{\text{stat}} \pm 0.11^{\text{syst}})$ [PRL108, 111602 (2012)]

CDF: $A_{CP}(D^0 \to KK) - A_{CP}(D^0 \to \pi\pi) = (-0.62 \pm 0.21^{stat} \pm 0.10^{syst})$ [CDF note 10784 (2012)]

- these CP asymmetries are marginally compatible with the SM, but uncertainties on the predictions prevent establishing whether this is or not a sign of NP
- CPV in mixing would be a clear sign of NP
- what to do now?
 - improve precision (also for the single asymmetries)
 - measure single asymmetries in more decay channels

no CPV excluded with CL of 0.006%

outline

- → Mixing and *CP* Violation (CPV) in the Charm Sector
- → Search for direct CP Violation:
 - D⁺ \rightarrow K_SK⁺, D_S⁺ \rightarrow K_SK⁺, D_S⁺ \rightarrow K_S π ⁺ analysis
 - D⁺ \rightarrow K⁺K⁻ π ⁺ analysis
- → $D^0 \overline{D^0}$ Mixing and search for *indirect* CP Violation:
 - $D^0 \rightarrow K^+K^-, \pi^+\pi^-/D^0 \rightarrow K^{\pm}\pi^{\mp}$ lifetime ratio analysis
- → Conclusions

Searches for Direct CPV

- need at least 2 amplitudes with different weak and strong phases:
 - Singly Cabibbo Suppressed: tree + penguin
 - Cabibbo Favoured + Doubly Cabibbo Suppressed
- time-integrated CP asymmetries:

$$A_{CP} = \frac{\mathcal{B}(D \to f) - \mathcal{B}(\overline{D} \to \overline{f})}{\mathcal{B}(D \to f) + \mathcal{B}(\overline{D} \to \overline{f})}$$

$$D^+ \rightarrow K^+K^-\pi^+$$
 SCS tree+penguin

$$D_s^+ \rightarrow K_s K^+$$
 CF + DCS

$$D^+ \rightarrow K_S K^+$$
 SCS tree+penguin

$$D_s^+ \rightarrow K_s \pi^+$$
 SCS tree+penguin

 \rightarrow if a K_s is present in the final state there is a contribution from CPV in K⁰ mixing:

$$A_{CP} = A_{CP}^{\Delta C} + A_{CP}^{K^0} \quad \text{ where } \quad A_{CP}^{K^0} = (\pm 0.332 \pm 0.006)\% \ \ \text{(+ if K^0 and - if $\overline{\mathrm{K}}^0$)}$$

 \rightarrow experimentally: $A_{\text{reco}} = A_{CP} + A_{FB}(\cos \theta^*) + A_{\epsilon}^h(p, \cos \theta_h)$

Forward-Backward asym. from $\gamma - \mathbb{Z}^0$ interf. coupled to detector asym.

• odd in $\cos\theta^* \rightarrow$ decouple from A_{CP} (independent of $\cos\theta^*$)

$$A_{CP} = \frac{A(+|\cos\theta^*|) + A(-|\cos\theta^*|)}{2}$$

(both analysis)

data-driven method (D⁺_(S) → K_ch⁺)

to evaluate it and correct for it:

detector-induced charge-

reconstructed asymmetry;

- e⁺e⁻ $\rightarrow \tau^+\tau^-$ data sample (D⁺ $\rightarrow K^+K^-\pi^+$)

- use data-corrected MC (D+ \rightarrow K+K- π +)
- → In three-body decays CPV effects can be enhanced in certain Dalitz Plot (DP) regions
 - DP model-dependent and model-independent searches

$D^+ \rightarrow K_S K^+, D_S^+ \rightarrow K_S K^+, D_S^+ \rightarrow K_S \pi^+$ analysis

 $L = 469 \text{ fb}^{-1}$

- \rightarrow Precision goal is $o(10^{-3})$, need to keep systematic errors at that level
 - correct for the detector-induced charge-reconstruction asymmetry using a *data driven* method that makes use of physical-asymmetries-free charged track sample from B decays [PRD 83, 071103 (2011)]
- \rightarrow Perform simultaneous mass fit and extract the number of $D_{(s)}^+$ and $D_{(s)}^-$ in 10 bins of $\cos \theta^*$
 - decouple CP from FB asymmetry and perform a χ^2 fit to a constant value, A_{CP} :

$$D^+ \rightarrow K_S K^+$$
159k evts

$$A_{CP} = (0.16 \pm 0.36)\%$$

$$D_s^+ \rightarrow K_s K^+$$
288k evts

$$A_{CP} = (0.00 \pm 0.23)\%$$

$$D_s^+ \rightarrow K_S \pi^+$$
14k evts

$$A_{CP} = (0.6 \pm 2.0)\%$$

$D^+ \rightarrow K_S K^+, D_S^+ \rightarrow K_S K^+, D_S^+ \rightarrow K_S \pi^+ \text{ results}$

- → Dominant systematic uncertainties:
 - statistics of the control sample used to correct for the charge asymmetry $(D_{(S)}^+ \to K_S K^+)$
 - binning in $\cos \theta^*$ to decouple CP from FB asymmetry $(D_S^+ \to K_S \pi^+)$
- → Apply corrections and evaluate the contribution of CPV from charm:

	$D^\pm o K^0_{\scriptscriptstyle S} K^\pm$	$D_s^\pm o K_{\scriptscriptstyle S}^0 K^\pm$	$D_s^\pm o K_{\scriptscriptstyle S}^0 \pi^\pm$
A_{CP} value from the fit	$(+0.16 \pm 0.36)\%$	$(0.00 \pm 0.23)\%$	$(+0.6 \pm 2.0)\%$
Correction for the bias from toy MC experiments	+0.013%	-0.01%	_
Correction for the bias in the PID selectors	-0.05%	-0.05%	-0.05%
Correction for the $K_S^0 - K_L^0$ interference (ΔA_{CP})	+0.015%	+0.014%	-0.008%
A_{CP} final value	$(+0.13 \pm 0.36 \pm 0.25)\%$	$(-0.05 \pm 0.23 \pm 0.24)\%$	$(+0.6 \pm 2.0 \pm 0.3)\%$
A_{CP} contribution	$(-0.332 \pm 0.006)\%$	$(-0.332 \pm 0.006)\%$	$(+0.332 \pm 0.006)\%$
from $K^0 - \overline{K}^0$ mixing	$(-0.332 \pm 0.000)/0$	$(-0.332 \pm 0.000)/0$	$(\pm 0.332 \pm 0.000) / 0$
A_{CP} final value (charm only)	$(+0.46 \pm 0.36 \pm 0.25)\%$	$(+0.28 \pm 0.23 \pm 0.24)\%$	$(+0.3 \pm 2.0 \pm 0.3)\%$

no CP Violation observed in charm

$D^+ \rightarrow K^+K^-\pi^+$, integrated asymmetry

→ The reconstruction efficiency is determined from MC (phase-space DP)

L = 476 fb⁻¹ 228k evts purity 92%

- the MC has been corrected for:
 - FB asymmetry using a PDF in $(p^*, \cos \theta^*)$
 - detector-induced charge-reconstruction asymmetry
- $\epsilon_i^{\pm} = \frac{N_{\rm i,reco}^{\pm}}{N_{\rm i,gen}^{\pm}}$

evaluated in bins of $\cos \theta^*$ and in DP bins

- Dalitz Plot integrated measurement:
 - evaluate $N(D^{\pm})$ fitting the mass distributions in 8 bins of $\cos \theta^*$
 - in each bin, correct $N(D^{\pm})$ by the corresponding $\varepsilon(D^{\pm})$ and compute:

$$A_i = \frac{N_i(D^+)/\epsilon_i(D^+) - N_i(D^-)/\epsilon_i(D^-)}{N_i(D^+)/\epsilon_i(D^+) + N_i(D^-)/\epsilon_i(D^-)}$$

- decouple CP from residual FB asymmetry combining symmetric bins in $cos\theta^*$
- perform a χ^2 fit to a constant value: $A_{CP}=(0.35\pm0.30\pm0.15)\%$

$D^+ \rightarrow K^+K^-\pi^+$, model independent analysis

→ Normalized residuals of efficiency-corrected and background-subtracted DP for D+ and D-:

• in each DP adaptive bin:

$$\Delta_i = \frac{n_i^2(D^+) - Rn_i^2(D^-)}{\sqrt{\sigma_i^2(D^+) + R^2\sigma_i^2(D^-)}}, n_i = N_i/\epsilon_i$$

where R corrects for residual A_{FR} :

$$R = \frac{N(D^+)/\epsilon(D^+)}{N(D^-)/\epsilon(D^-)} = 1.020 \pm 0.006$$

→ Measurement of CP Violation in 4 regions of the DP:

- divide the DP into 4 regions
- evaluate N(D[±]) in each region by fitting the mass distribution
- correct $N(D^{\pm})$ by the corresponding $\varepsilon(D^{\pm})$, and $N(D^{-})$ by R (A_{FR}) :

$$A_{CP} \equiv \frac{N(D^{+})/\epsilon(D^{+}) - R \ N(D^{-})/\epsilon(D^{-})}{N(D^{+})/\epsilon(D^{+}) + R \ N(D^{-})/\epsilon(D^{-})}$$

no CPV observed

BaBar PRELIMINARY

	Dabai i Keliminaki					
	Dalitz plot region	$N(D^+)$	$\epsilon(D^+)[\%]$	$N(D^-)$	$\epsilon(D^-)[\%]$	$A_{CP}[\%]$
	Below $\bar{K}^*(892)^0$	1882 ± 70	7.00	1859 ± 90	6.97	$-0.65 \pm 1.64 \pm 1.73$
_	$\bar{K}^*(892)^0$	36770 ± 251	7.53	36262 ± 257	7.53	$-0.28 \pm 0.37 \pm 0.21$
	$\phi(1020)$	48856 ± 289		48009 ± 289	8.54	$-0.26 \pm 0.32 \pm 0.45$
_	Above $\bar{K}^*(892)^0$ and $\phi(1020)$	25616 ± 244	8.01	24560 ± 242	8.00	$1.05\pm0.45\pm0.31$

$D^+ \rightarrow K^+K^-\pi^+$, model dependent analysis

- → Legendre polynomial moments analysis [PRD 78 051102] (model-independent method) shows no evidence of CPV.
- → use a model to describe the DP distribution and allow each resonance to have a different amplitude and phase for D+ and D-.
 - each resonance is parameterized with 4 parameters: $\mathcal{M}_r, \ \phi_r \rightarrow \text{amplitude} \ \text{and phase of the D}^{\scriptscriptstyle +}$

• a simultaneous fit to the D⁺ and D⁻ DPs is performed

difference of the DP proj. of data (points) and fit (blue curve) $\pm 1\sigma$:

BaBar PRFLIMINARY

Dabai i Keliminaki			
Resonance	r (%)	$\Delta\phi$ (°)	
$\bar{K}^*(892)^0$	0. (FIXED)	0. (FIXED)	
$\bar{K}_0^*(1430)^0$	$-9.40^{+5.65}_{-5.36} \pm 4.42$	$-6.11^{+3.29}_{-3.24} \pm 1.39$	
$\phi(1020)$	$0.35^{+0.82}_{-0.82}\pm0.60$	$7.43^{+3.55}_{-3.50}\pm2.35$	
NR	$-14.30^{+11.67}_{-12.57} \pm 5.98$	$-2.56^{+7.01}_{-6.17}\pm 8.91$	
$\kappa(800)$	$2.00^{+5.09}_{-4.96}\pm1.85$	$2.10^{+2.42}_{-2.45}\pm1.01$	
$a_0(1450)^0$	$5.07^{+6.86}_{-6.54} \pm 9.39$	$4.00^{+4.04}_{-3.96} \pm 3.83$	
	Δx	Δy	
$f_0(980)$	$-0.199^{+0.106}_{-0.110} \pm 0.084$	$-0.231^{+0.100}_{-0.105} \pm 0.079$	
$f_0(1370)$	$0.019^{+0.049}_{-0.048} \pm 0.022$	$-0.0045^{+0.037}_{-0.039}\pm0.016$	

outline

- → Mixing and *CP* Violation (CPV) in the Charm Sector
- → Search for *direct* CP Violation:
 - D⁺ \rightarrow K_SK⁺, D_S⁺ \rightarrow K_SK⁺, D_S⁺ \rightarrow K_S π ⁺ analysis
 - D⁺ \rightarrow K⁺K⁻ π ⁺ analysis
- → $D^0 \overline{D^0}$ Mixing and search for *indirect* CP Violation:
 - $D^0 \rightarrow K^+K^-, \pi^+\pi^-/D^0 \rightarrow K^{\pm}\pi^{\mp}$ lifetime ratio analysis
- → Conclusions

Mixing and CPV with Lifetime Ratio Analysis

→ Perform a simultaneous fit to 5 signal channels and extract:

flavour tagged

- $D^{*+} \rightarrow D^0 \pi_s^+$; $D^0 \rightarrow K^+K^-$
- $D^{*+} \rightarrow D^0 \pi_{\epsilon}^{+}; D^0 \rightarrow \pi^{+}\pi^{-}$
- $D^{*+} \rightarrow D^0 \pi_s^+$; $D^0 \rightarrow K^-\pi^+, K^+\pi^-$

flavour untagged

- $D^0 \rightarrow K^+K^-$
- $D^0 \rightarrow K^-\pi^+, K^+\pi^-$
- in general y_{CP} and ΔY depend on the final state
- in case of no *CP* violation: $y_{CP} = y$ and $\Delta Y = 0$
- Experimental assumptions:

• Mixing:
$$y_{CP} = \frac{\tau_D}{2} \left(\frac{1}{\tau^+} + \frac{1}{\overline{\tau}^+} \right) - 1$$

• Indirect CPV:

$$\Delta Y = \frac{\tau_D}{2} \left(\frac{1}{\tau^+} - \frac{1}{\overline{\tau}^+} \right)$$

- $\tau_D = D^0$ lifetime $(K^{\pm}\pi^{\mp})$
- τ^+ ($\overline{\tau}^+$) = D⁰ (\overline{D}^0) effective lifetime for decays to CP+ eigenstates (K^+K^- , $\pi^+\pi^-$)
- small mixing $(|x|, |y| \ll 1) \rightarrow$ proper time distributions are exponential with corresponding effective lifetimes to a very good approximation;
- not sensitive to direct CPV + weak phase ϕ does not depend on final state \rightarrow KK and $\pi\pi$ modes share common effective lifetimes,
 - crosscheck fit on data.

$$y_{CP} = y \cos \phi - \frac{A_M}{2} x \sin \phi$$

$$\Delta Y = -x \sin \phi + \frac{A_M}{2} y \cos \phi$$

Backgrounds and Data Mass Fits

flavour untagged:

flavour tagged:

combinatorial background:

- → random tracks → ~ zero-lifetime component
- → main background
- → lifetime PDF is extracted from data sidebands

charm background:

- → common ancestor of the D⁰ products is a long-living charm meson → signal-like long lifetime
- → very small component in the signal region (<0.7%)</p>
- lifetime PDF is extracted from MC

Proper Time Fit Projections

Lifetime Fit Results

BaBar PRELIMINARY

$$y_{CP} = [0.720 \pm 0.180(\text{stat}) \pm 0.124(\text{syst})]\%$$

$$\Delta Y = [0.088 \pm 0.255(\text{stat}) \pm 0.058(\text{syst})]\%$$

- \rightarrow exclude no-mixing hypothesis @ 3.3 σ
- → no CP Violation observed

 $\mathbf{y}_{\mathbf{CP}}(\%)$

- \rightarrow most precise single measurement of y_{CP} ;
- → this measurement favors a lower value for y_{CP}, in closer agreement with HFAG value for y;
 - HFAG y = (0.456 ± 0.186) % from direct meas.
- → this result is compatible with previous BaBar results [PRD 80, 071103 (2009)], [PRD 78, 011105 (2008)]:
 - $\Delta Y = (-0.26 \pm 0.36 \pm 0.08) \%$ (sign difference in the def.)
 - $y_{CP} = (1.16 \pm 0.22 \pm 0.18) \%$
- this result supersedes the previous BaBar results.

 $(1.064 \pm 0.209)\%$

Conclusions

- → Increase in precision and inclusion of more channels are needed to understand the origin of the CP Violation reported by LHCb and CDF
- \Rightarrow We have searched for CP Violating effects with the full BaBar data sample reaching a precision down to $o(10^{-3})$
- → We have found no evidence of direct or indirect CP Violation in the following channels:
 - D⁺ \rightarrow K⁺K⁻ π ⁺ (direct CPV)
 - $D^+ \rightarrow K_S K^+, D_S^+ \rightarrow K_S K^+, D_S^+ \rightarrow K_S \pi^+ (direct CPV)$
 - $D^0 \rightarrow K^+K^-, \pi^+\pi^- \text{ (indirect CPV)}$
- \rightarrow We have measured y_{CP} with the highest precision to date, and excluded the no-mixing hypothesis at 3.3 σ significance.

thank you!

backup slides

The BaBar Detector

$D^+ \rightarrow K_s K^+, D_s^+ \rightarrow K_s K^+, D_s^+ \rightarrow K_s \pi^+$ analysis

Correction for the detector-induced charge-reconstruction asymmetry:

data driven method makes use of 100M Y(4S) $\rightarrow B\overline{B}$ decays: sample free of any physical asymmetries:

- quality cuts to remove p and e, $p_{\tau} > 0.4 \text{ GeV/c}$
- continuum (Off) is subtracted: $N_{\text{rec}}^{\pm}(\vec{p}) = N_{\text{recOn}}^{\pm}(\vec{p}) N_{\text{recOff}}^{\pm}(\vec{p}) \frac{\mathcal{L}_{\text{On}}}{\mathcal{L}_{\text{On}}}$
- evaluate the efficiency correction as a function of track momentum $R(\vec{p}) = \frac{\epsilon^+(\vec{p})}{\epsilon^-(\vec{p})} = \frac{N^+(\vec{p})}{N^-(\vec{p})}$

$$R(\vec{p}) = \frac{\epsilon^{+}(\vec{p})}{\epsilon^{-}(\vec{p})} = \frac{N^{+}(\vec{p})}{N^{-}(\vec{p})}$$

Systematic uncertainties:

	Systematic uncertainty [%]	$D^\pm \to K^0_{\scriptscriptstyle S} K^\pm$	$D_s^\pm o K_{\scriptscriptstyle S}^0 K^\pm$	$D_s^\pm o K_{\scriptscriptstyle S}^0 \pi^\pm$
correction	Efficiency of PID selectors	0.05%	0.05%	0.05%
of charge	Statistics of the control sample	$\left(0.23\%\right)$	$\boxed{0.23\%}$	0.06%
asymmetry	Mis-identified tracks in the control sample	0.01%	0.01%	0.01%
decoupling 🗸	Binning in $\cos \Theta$	0.04%	0.02%	0.27%
CP from FB	$K^0 - \overline{K}^0$ regeneration ¹	0.05%	0.05%	0.06%
asymmetry	$K_S^0 - K_L^0$ interference ²	0.015%	0.014%	0.008%
	Total	0.25%	0.24%	0.29%

¹arXiv:1006.1938 [hep/ex] (2010)

²JHEP 1204, 002 (2012)

$D^+ \rightarrow K^+K^-\pi^+$ analysis

- → Sources of systematic uncertainties:
 - event selection
 - corrections applied to MC
 - tracking asymmetry correction
 - binning in $cos\theta^*$
 - Dalitz Plot model

→ Breakdown of the systematic uncertainties for the Integrated Measurement:

Average $\cos \theta$ asymmetry	$\Delta A_{CP}[\%]$
Event selection	0.07
Single forward and backward bin	0.01
$\cos \theta_{CM}$ binning	0.04
Track asymmetry correction	0.12

Lifetime Ratio analysis

→ Systematic uncertainties:

BaBar	PRELI/	MINARY
-------	--------	--------

$ \Delta[y_{CP}] $ (%)	$ \Delta[\Delta Y] $ (%)		
0.057	0.022		
0.059	0.054		
0.022	0.0		
0.045	0.001		
0.079	0.002		
0.124	0.058		
	0.057 0.059 0.022 0.045 0.079		

total systematics reduced w.r.t. previous BaBar analyses

- tagged-only analysis [PRD 78, 011105 (2008)]
- untagged-only analysis [PRD 80, 071103 (2009)]