

CMS Experiment at LHC, CERN Data recorded: Sat Apr 14 18:18:05 2012 CEST Run/Event: 191247 / 398701455 Lumi section: 272

Search for the

Higgs boson in H→WW^(*)

E. Di Marco (Caltech) on behalf of CMS Collaboration ICHEP, Melbourne, July 7, 2012

WW→2l2v,lvqq

$H \rightarrow WW \rightarrow 2I2v$: strategy

- \square Most sensitive channel around $2 \times M_W$ (125 < M_H < 200 GeV)
- Signature: two high p_T isolated leptons + MET

leptons

- No narrow mass peak
- Main backgrounds
 - WW (irreducible)
 - Z+jets, WZ, ZZ, tt, W + jets
- BKG estimation crucial
 - Main BG estimated from data

$H \rightarrow WW^* \rightarrow 2I2v: backgrounds$

process	characteristic	rejection		
W+jets (31000 pb)	lepton + fake lepton	2 well identified and isolated leptons		
Z+jets (5000 pb)	Z peak, no real E _T ^{miss}	* proj E^{T}_{miss} > 40 GeV(ee,µµ), 20 GeV (eµ) * $ m_{II}-m_Z $ <15 GeV (ee, µµ), m_{II} >12 GeV (eµ)		
tt (158 pb), tW (11 pb)	additional (b-)jets	 classify events in 0-,1-jet anti b-tagging 		
W,Z + γ (165 pb)	electron from γ coversion	conversion veto		
WW (43 pb)	non resonant	* small $\Delta \phi_{ll}$		
WZ (18 pb), ZZ (6 pb)	Z peak	* $ m_{ll}-m_Z < 15 \text{ GeV}$ (ee, $\mu\mu$), $m_{ll} > 12 \text{ GeV}$ (e μ)		

relative importance after selection depends on m_H

$H \rightarrow WW \rightarrow 2I2v$: selection

DY-dominated sample, MET selection, Z-veto [crucial the resolution with high pileup]

used a combination of MET / track-based MET / dilepton recoil against MET, etc to reduce Drell Yan for ee/ $\mu\mu$ final states

- top dominated sample: jet counting (0,1,2) + b-tagging [crucial low mis-tag rate for jelow p_T jets]
- □ WW dominated sample [performed measurement of cross section for pp→WW @ 8 TeV]
- □ apply m_H dependent cuts: kinematics depending on the Higgs mass $(p_T^1, p_T^2, \Delta \phi_{11}, m_{11}, m_T)$

Jet categorization

- Categorize events by jet multiplicity (jet $p_T>30$ GeV, $|\eta|<4.7$)
 - □ very good description of jet counting, validated with $Z \rightarrow II$ events in data
 - \square jet ID used to reduce pileup effects at high $|\eta|$
- □ 0-jet: WW dominated. Most sensitive category to $gg \rightarrow H$ top
 - \square m_H<130 GeV: W+jets, Drell Yan backgrounds
 - **• • µ** final state very pure final state
- □ **1-jet**: dominated by tt+tW, apply anti b-tagging on all jets with $p_T > 10$ GeV
 - □ clean $e\mu$ from DY $\rightarrow \tau\tau$ with $m_T > 80$ GeV
- **2-jets**: specific selections to isolate VBF production

 $\Delta \eta(j_1-j_2) > 3.5, m_{j1,j2} > 450 \text{ GeV}$

- Measure **all the backgrounds** from data control samples:
 - - $\label{eq:product} \square \quad relevant for low <math>p_T$ leptons (low m_H)
 - **top** from b-tagged events
 - **D DY** from Z on-peak data events
- Cut & count analysis: dominated by systematics on background normalization:
 - □ W+jets: $\approx 40\%$ (do not improve with statistics)

- **D**rell-Yan: 60%
- **D** Top: 25%

crucial effort in measuring backgrounds from data with the largest precision possible

u WW: 15-30%

WW event yields

• With a selection tuned to reduce systematic uncertainties ($p_T^{1,2}>20/20$ GeV), measure the WW cross section at 8 TeV:

 $\sigma_{WW} = 69.9 \pm 2.8 \text{(stat)} \pm 5.6 \text{(syst)} \pm 3.1 \text{(lumi.)pb}$ $\sigma_{WW}^{NLO}(gg \to W^+W^- + qq \to W^+W^-) = 57.25 \begin{pmatrix} +2.35 \\ -1.60 \end{pmatrix} \text{pb}$

- similar ratio measurement / prediction as in 7 TeV data collected in 2011
- **D** pre-selection relaxed for a low mass Higgs ($p_T^{1,2}>10/20$ GeV):

statistical	uncertainties	only	ŗ
Statistical		Uniy	

	data	tot. bkg.	WW	tt+tW	
0 jet	1594	1501±21	1046.1±7.2	164.2±5.4	
1 jet	1186	1162±27	381.0±4.0	527.3±8.4	
2 jets	1295	1412±24	177.0±2.8	886.5±11.1	
	W+jets	WZ+ZZ	Ζ/γ*	Wγ	
0 jet	158.2±7.1	32.6±0.6	73±17	27.1±3.9	
1 jet	122.6±6.7	30.3±0.6	77±24	23.7±5.2	
2 jets	94.9±6.4	20.8±0.5	227±20	5.6±2.1	

WW \rightarrow 2l2v event pre-selection

Higgs selection

Further discrimination with Higgs is provided by kinematic variables: apply optimized cuts:

-							
<i>m</i> _H [GeV]	$p_{\mathrm{T}}^{\mathrm{leading}}$ [GeV]	$p_{\mathrm{T}}^{\mathrm{trailing}}$ [GeV]	$m_{\ell\ell}$ [GeV]	Δ φ_{ℓℓ} [°]	M_T [GeV]		
110	> 20	> 10	< 40	< 115	[80 - 110]		
115	> 20	> 10	< 40	< 115	[80 - 110]		
120	> 20	> 10	< 40	< 115	[80 - 120]		
125	> 20	> 10	< 40	< 115	[80 - 120]		
130	> 25	> 10	< 45	< 90	[80 - 125]		
135	> 25	> 12	< 45	< 90	[80 - 128]		

- Result on 8 TeV data: observed exclusion limit: $127 < M_H < 200 \text{ GeV}$
- 7 TeV data not re-analized: observed exclusion limit: $129 < M_H < 270 \text{ GeV}$

this channel is sensitive to $m_H = [125-400]$ GeV with 8 TeV data

Combined result on 10 fb⁻¹

statistical combination of 8 TeV (5.1 fb⁻¹) and 7 TeV (4.9 fb⁻¹, not reanalized)

Ppvl←WW←H

- Sensitive channel for $m_H=[300-600]$ GeV, max sensitivity for $m_H=350$ GeV
- Event selection: one lepton, E_T^{miss} and 2 or 3 jets:
 - one $e(\mu)$ with $p_T > 35(25)$ GeV
 - anti kT jets with $p_T > 30 \text{ GeV}$
 - $\Box \quad E_T^{miss} > 25 (30) \text{ GeV for } e(\mu) \text{ final state}$
 - events with di-jet mass 65<m_{j1j2}<95 GeV keep 80% of signal</p>
 - kinematic fit with constraints M(lv)=M_W and M(jj)=M_W allows full reconstruction of Higgs boson mass M(lvjj)
 - use a m_H-dependent angular likelihood discriminant to optimize continuum W+jets rejection
- □ Search for a peak over a continuum background

• Used 4.9 fb⁻¹ of 7 TeV data and 3.5 fb⁻¹ of 8 TeV data

Observed limit: $240 < M_H < 450 \text{ GeV}$

7 TeV + 8 TeV data

Observed limit: $260 < M_H < 390 \text{ GeV}$

8 TeV data

Conclusions

- □ The H→WW channel is one of the most sensitive to the SM Higgs in a wide mass range, starting from m_H =125 GeV
- CMS has searched for a Standard Model Higgs boson in WW fully leptonic final state with 4.9 fb⁻¹ (7 TeV) and 5.1 fb⁻¹ (8 TeV) data
 - observed an exclusion limit of $m_H = [129-520]$ GeV, when expecting $m_H = [122-450]$ GeV exclusion limit
 - for low masses, a broad excess is observed at the level of 2 Standard Deviations
- CMS has extended the search exploring the semi-leptonic final state, excluding the presence of Higgs boson n 240-450 GeV

the excess at low mass is still both compatible with s Higgs boson with mass mH=125 GeV and with a fluctuation of the backgrounds

backup

7 TeV + 8 TeV data expected and observed exclusion limit

expected observed limit and pseudo-data with background + $1 \times SM$ Higgs, m_H=125 GeV

m_H [GeV]

Event yields at 8 TeV

ти	Н	рр	WZ + ZZ	Top	W + iets	$W_{\gamma}(*)$	all bkg.	data
$\begin{array}{ c c c c c } \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$		$+Z/\gamma^* \rightarrow \ell^+ \ell^-$ hop we person		,	un eng.			
			0-jet categ	gory <i>eμ</i> final s	state			
125	23.9 ± 5.2	87.6 ± 9.5	2.2 ± 0.2	9.3 ± 2.7	19.1 ± 7.2	6.0 ± 2.3	124.2 ± 12.4	158
130	35.3 ± 7.6	96.8 ± 10.5	2.5 ± 0.3	10.1 ± 2.8	20.7 ± 7.8	6.3 ± 2.4	136.3 ± 13.6	169
160	98.3 ± 21.2	53.6 ± 5.9	1.2 ± 0.1	6.3 ± 1.7	2.5 ± 1.3	0.2 ± 0.1	63.9 ± 6.3	79
400	16.6 ± 4.8	50.5 ± 5.8	1.5 ± 0.2	26.1 ± 5.7	4.5 ± 2.0	0.7 ± 0.5	83.3 ± 8.4	92
			0-jet catego	ry ee/µµ fina	l state			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								123
130	23.5 ± 5.1	67.4 ± 7.5	41.3 ± 15.9	2.3 ± 0.6	11.0 ± 4.3	4.8 ± 2.5	126.8 ± 18.3	134
160	86.0 ± 18.7	44.5 ± 4.9	11.3 ± 13.4	3.8 ± 0.9	1.3 ± 1.1	0.4 ± 0.3	61.4 ± 14.4	92
400	12.3 ± 3.6	37.1 ± 4.3	5.7 ± 1.3	20.0 ± 4.7	3.4 ± 1.9	13.6 ± 4.8	79.9 ± 8.3	55
			1-jet categ	gory <i>eµ</i> final s	state			
125	10.3 ± 3.0	19.5 ± 3.7	2.4 ± 0.3	22.3 ± 2.0	11.7 ± 4.6	5.9 ± 3.2	61.7 ± 7.0	54
130	15.7 ± 4.7	22.0 ± 4.1	2.6 ± 0.3	25.1 ± 2.2	12.8 ± 5.1	6.0 ± 3.2	68.5 ± 7.6	64
160	52.6 ± 14.9	20.1 ± 4.0	1.6 ± 0.2	21.5 ± 1.8	5.0 ± 2.3	0.9 ± 0.5	49.2 ± 5.0	62
400	11.4 ± 3.3	39.1 ± 6.3	2.1 ± 0.3	56.6 ± 3.7	7.1 ± 3.1	0.6 ± 0.6	105.5 ± 8.0	96
			1-jet catego:	ry ee/µµ fina	l state			
125	4.4 ± 1.3	9.7 ± 1.9	8.7 ± 4.9	9.5 ± 1.1	3.9 ± 1.7	1.3 ± 1.2	33.1 ± 5.7	43
130	7.1 ± 2.2	11.2 ± 2.2	9.1 ± 5.4	10.7 ± 1.2	3.7 ± 1.7	1.3 ± 1.2	36.0 ± 6.3	53
160	37.9 ± 10.9	13.8 ± 2.8	28.4 ± 10.7	16.2 ± 1.6	3.8 ± 2.1	0.0 ± 0.0	62.3 ± 11.4	65
400	7.4 ± 2.2	19.6 ± 3.2	7.9 ± 2.4	33.4 ± 2.4	1.6 ± 1.3	4.4 ± 1.8	66.8 ± 5.1	67
			2-jet categ	gory <i>eμ</i> final s	state			
125	1.5 ± 0.2	0.4 ± 0.1	0.1 ± 0.0	3.4 ± 1.9	0.3 ± 0.3	0.0 ± 0.0	4.1 ± 1.9	6
130	2.5 ± 0.4	0.5 ± 0.2	0.1 ± 0.0	3.0 ± 1.8	0.3 ± 0.3	0.0 ± 0.0	3.9 ± 1.9	6
160	9.9 ± 1.3	0.8 ± 0.2	0.1 ± 0.0	4.2 ± 2.2	0.6 ± 0.4	0.0 ± 0.0	5.6 ± 2.2	11
400	2.3 ± 0.4	1.9 ± 0.8	0.2 ± 0.0	9.1 ± 2.7	0.5 ± 0.4	0.0 ± 0.0	11.7 ± 2.9	22
2-jet category $ee/\mu\mu$ final state								
125	0.8 ± 0.1	0.3 ± 0.1	3.1 ± 1.8	2.0 ± 1.2	0.0 ± 0.0	0.0 ± 0.0	5.4 ± 2.2	7
130	1.3 ± 0.2	0.4 ± 0.2	3.8 ± 2.2	2.0 ± 1.2	0.0 ± 0.0	0.0 ± 0.0	6.2 ± 2.5	7
160	6.0 ± 0.8	0.7 ± 0.3	4.7 ± 2.7	2.4 ± 1.2	0.2 ± 0.4	0.0 ± 0.0	8.0 ± 3.0	9
400	1.6 ± 0.2	1.5 ± 0.7	6.6 ± 2.8	4.9 ± 1.9	0.7 ± 0.7	0.0 ± 0.0	13.8 ± 3.5	15