Measurements of CP violation in charmless two-body B decays at LHCb

ICHEP 2012, Melbourne, 7 July 2012, Paul Soler on behalf of the LHCb Collaboration

Introduction

- In this talk, we will present the LHCb results on charmless two-body B decays
- The talk will consist of the following three topics:
 - Measurements of the branching fractions of $B^0 \rightarrow h^+h^-$ and $B^0_s \rightarrow h^+h^-$, where $h = \pi, K, \Lambda^0_b \rightarrow p\pi^-$ and $\Lambda^0_b \rightarrow pK^-$
 - Measurements of direct CP violation in $B^0 \rightarrow K^+ \pi^-$ and $B^0_s \rightarrow K^- \pi^+$ decays
 - Measurement of time-dependent CP violation in two-body charmless decays $B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$
- We will follow closely the following publications: arXiv:1206.2794, arXiv:1202.6251, LHCb-CONF-2012-007

Motivation

Study of time-dependent CP asymmetries in $B \rightarrow hh$ can be used to extract the unitarity angle γ from loop-mediated processes:

$$\mathcal{A}_{CP}(t) = \frac{\Gamma_{\overline{B} \to hh}(t) - \Gamma_{B \to hh}(t)}{\Gamma_{\overline{B} \to hh}(t) - \Gamma_{B \to hh}(t)} = \frac{A^{dir} \cos(\Delta M t) + A^{mix} \sin(\Delta M t)}{\cosh\left(\frac{\Delta\Gamma t}{2}\right) - A^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma t}{2}\right)} \left(A_{f}^{dir}\right)^{2} + \left(A_{f}^{mix}\right)^{2} + \left(A_{f}^{\Delta\Gamma}\right)^{2} = 1$$

- □ For the decays $B^0 \to \pi^+ \pi^-$ and $B^0_s \to K^+ K^-$ we have: $A^{dir}_{\pi\pi}(\gamma, d, \theta)$ $A^{dir}_{KK}(\gamma, d', \theta')$ d, d' = strong amplitudes $A^{mix}_{\pi\pi}(\gamma, \phi_d, d, \theta)$ $A^{dir}_{KK}(\gamma, \phi_s, d', \theta')$ $\theta, \theta' = \text{strong phases}$ $\phi_d, \phi_s = B_d$ and B_s mixing phases
 - U-spin symmetry (Fleischer, PLB 459, 1999, 306): d=d' and $\theta=\theta'$
 - Use measured value of φ_{d} to extract γ and φ_{s}
 - Use branching fractions to constrain d, d', θ , θ' and U-spin

Branching fractions

- □ Branching fractions in charmless two-body decays are all normalised to: $B^0 \rightarrow K^+ \pi^-$
- Data considered for this analysis: 0.37 fb⁻¹ from 2011
- Particle ID used to identify each of the channels
- □ Three selections, optimised for different channels: loose for $B^0 \to K^+\pi^-$, $B^0 \to \pi^+\pi^-$, $B^0_s \to K^+K^-$, $\Lambda^0_b \to pK^-$ and $\Lambda^0_b \to p\pi^$ tighter for $B^0_s \to \pi^+K^-$ and the tightest for $B^0 \to K^+K^-$ and $B^0_s \to \pi^+\pi^-$

Branching fractions

Final results branching fractions: arXiv:1206.2794 $\mathcal{B}(B^0 \to \pi^+ \pi^-) / \mathcal{B}(B^0 \to K^+ \pi^-) = 0.262 \pm 0.009 \pm 0.017$ $(f_s/f_d) \cdot \mathcal{B}(B_s^0 \rightarrow K^+K^-)/\mathcal{B}(B^0 \rightarrow K^+\pi^-) = 0.316 \pm 0.009 \pm 0.019$ $(f_s/f_d) \cdot \mathcal{B}(B_s^0 \rightarrow \pi^+ K^-)/\mathcal{B}(B^0 \rightarrow K^+ \pi^-) = 0.074 \pm 0.006 \pm 0.006$ $(f_d/f_s) \cdot \mathcal{B}(B^0 \to K^+K^-)/\mathcal{B}(B_s^0 \to K^+K^-) = 0.018^{+0.008}_{-0.007} \pm 0.009$ $(f_s/f_d) \cdot \mathcal{B}(B_s^0 \to \pi^+\pi^-)/\mathcal{B}(B^0 \to \pi^+\pi^-) = 0.050^{+0.011}_{-0.009} \pm 0.004$ $\mathcal{B}(\Lambda_b^0 \rightarrow p\pi^-)/\mathcal{B}(\Lambda_b^0 \rightarrow pK^-) = 0.86 \pm 0.08 \pm 0.05$ (world's most precise) With $\mathcal{B}(B^0 \to K^+ \pi^-) = (19.4 \pm 0.6) \times 10^{-6}$ (HFAG) and $f_s / f_d = 0.267^{+0.021}_{-0.020}$ $\mathcal{B}(B^0 \to \pi^+ \pi^-) = (5.08 \pm 0.17 \pm 0.37) \times 10^{-6}$ PRD 85 (2012), 032008 $\mathcal{B}(B_s^0 \rightarrow K^+ K^-) = (23.0 \pm 0.7 \pm 2.3) \times 10^{-6} \quad \text{(world's most precise)}$ $\mathcal{B}(B_s^0 \to \pi^+ K^-) = (5.4 \pm 0.4 \pm 0.6) \times 10^{-6}$ (world's most precise) $\mathcal{B}(B^0 \rightarrow K^+ K^-) = (0.11^{+0.05}_{-0.04} \pm 0.06) \times 10^{-6}$ (world's most precise) $\mathcal{B}(B_s^0 \to \pi^+ \pi^-) = (0.95^{+0.21}_{-0.17} \pm 0.13) \times 10^{-6}$ $(5.3\sigma, first observation)$ 7 ICHEP 2012, Melbourne, 7 July 2012

Experimental situation

□ Time-dependent CP asymmetry in $B^0 \rightarrow \pi^+ \pi^-$

Time-dependent analysis

- LHCb measurement on time-dependent asymmetries
 - Data sample: integrated luminosity 0.69 fb⁻¹ from 2011
 - Common event selection: $B \rightarrow K\pi$, $B^0 \rightarrow \pi^+\pi^-$, $B_s^0 \rightarrow K^+K^-$
 - PID cuts identify each of the final states
 - Parameterisation decay time resolution $\sigma_t = 50 \ fs$, from $B \rightarrow J/\psi X$

R0

 \mathbf{R}^0

- Acceptance from MC
- Flavour tagging:
 - Opposite side tagging: arXiv:1202.4979

Sign of muon tags B^0 flavour at production

ignal

LHCb-CONF-2012-007 ICHEP 2012, Melbourne, 7 July 2012

□ Preliminary $B^0 \rightarrow \pi^+ \pi^-$ results from LHCb

Results $B^0 \rightarrow \pi \pi$

LHCb-CONF-2012-007

Conclusions

- Branching fractions of two-body charmless B decays established: three channels world's most precise and $B_s^0 \rightarrow \pi^+ \pi^-$ observed for the first time at 5.3 σ
- Direct CPV: first 5σ observation of CPV at hadron collider and first evidence of CPV in B_s decays
- Time-dependent CP violation in two body charmless B decays using 0.69 fb⁻¹ data from 2011:
 - $B_d^0 \rightarrow \pi^+ \pi^-$ CP asymmetries agree with world average
 - First evidence (3.2 σ) time-dependent CPV at hadron collider
 - CP asymmetry in $B_s^0 \rightarrow K^+ K^-$ measured for the first time
- Outlook:
 - Analyses still statistically limited: 1.0 fb⁻¹ collected in 2011 and 0.6 fb⁻¹ collected in 2012 (expect ~1.5 fb⁻¹ by end of the year) ICHEP 2012, Melbourne, 7 July 2012

Backup Slides

Branching fractions

Signal yields from fits to selections A, B and C:

Selection	Decay	Signal yield
A	$B^0 \rightarrow K^+ \pi^-$	9822 ± 122
	$B^0 ightarrow \pi^+\pi^-$	1667 ± 51
	$B^0_s \rightarrow K^+ K^-$	2523 ± 59
	$\Lambda_b^0 \rightarrow p K^-$	372 ± 22
	$\Lambda_b^0 \rightarrow p \pi^-$	279 ± 22
В	$B^0 \rightarrow K^+ \pi^-$	3295 ± 59
	$B^0_s ightarrow\pi^+K^-$	249 ± 20
С	$B^0 \rightarrow \pi^+\pi^-$	1076 ± 36
	$B_s^0 \rightarrow K^+ K^-$	682 ± 27
	$B^0 \rightarrow K^+ K^-$	13^{+6}_{-5}
	$B^0_s ightarrow\pi^+\pi^-$	49^{+11}_{-9}

arXiV:1206.2794