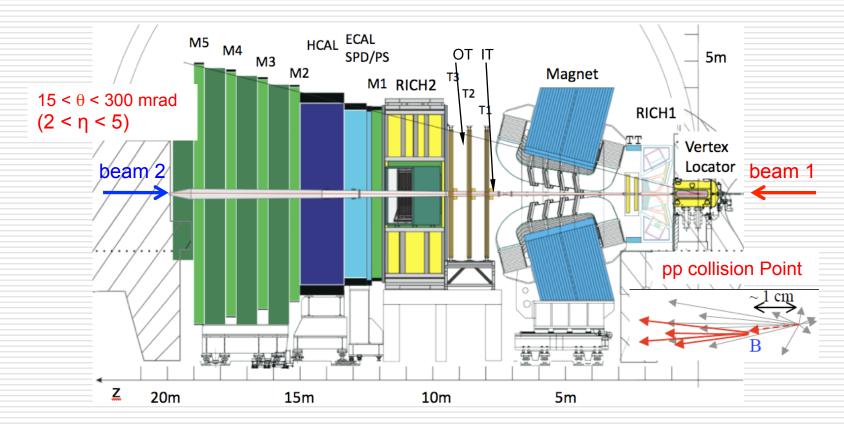
Studies of the electroweak penguin transitions $b \to s \ \mu^+ \ \mu^-$ and $b \to d \ \mu^+ \ \mu^-$ at LHCb

ICHEP2012

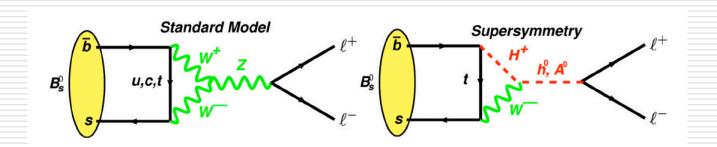
Abraham Gallas for the LHCb Collaboration

Outline:


- The LHCb detector
- $\mathrm{B}^0 \to K^{*0} \mu^+ \mu^-$ analysis:
 - Measurement of angular observables
 - Measurement of the A_{FB} zero-crossing point (q^2_0)
 - $B^0 \to K^{*0} \mu^+ \mu^-$ and $B_s^{\ 0} \to \phi \mu^+ \mu^-$ differential branching fractions
- First observation of the decay $B^+ \to \pi^+ \mu^+ \mu^-$
- Isospin asymmetry in $B \to K^{(*)} \mu^+ \mu^-$
- Summary

The LHCb detector

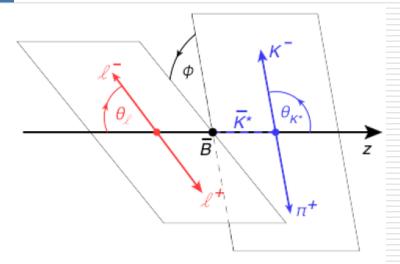
LHCb is a forward detector designed to study heavy flavour physics at the LHC

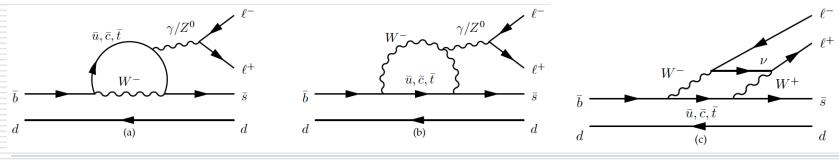

- LHCb has excellent vertex and momentum resolution, PID, μ-ID, and efficient trigger
- Each of these are critical for studies of heavy flavor physics

Rare decays at LHCb

- LHCb is searching for physics beyond the Standard Model (SM) by studying rare B and D meson decays.
- The rare decays considered here are Flavour Changing Neutral Current processes
 - These are mediated by loop diagrams in the SM
- New physics particles can make significant contributions to these diagrams

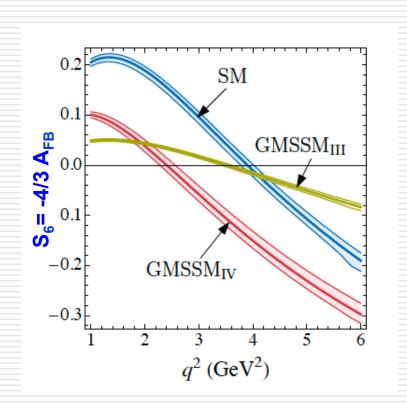
- New physics contributions can affect:
 - The total amplitude, accessible through branching fraction measurements
 - Partial amplitudes and phases, accessible through angular analyses
- Indirect searches at LHCb are complimentary to direct searches at the GPDs

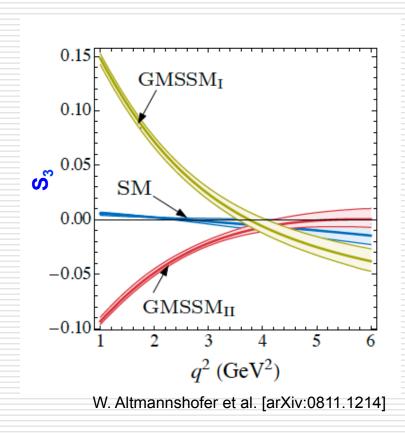

 ${
m B^0}
ightarrow K^{*0} \, \mu^+ \mu^-$ Angular Analysis LHCb-CONF-2012-008


${ m B}^0 o K^{*0} \mu^+ \mu^-$ Angular Analysis Motivation

- Flavour changing neutral current → loop
- The angular distribution of the rare decay $B^0 \to K^{*0} \mu^+ \mu^-$ is sensitive to New Physics
- Described in terms of the decay angles θ_{ℓ} , θ_{K} , ϕ and $q^{2} = m_{uu}^{2}$

- Fitting these angles allows access to angular observables where the hadronic uncertainties are under control:
 - F_1 , the fraction of the K^{*0} longitudinal polarization.
 - A_{FB}, the forward-backward asymmetry of the dimuon system
 - $S_3 \propto A_T^2(1-F_L)$, the asymmetry in K^{*0} transverse polarization
 - A_{IM}, a T-odd asymmetry

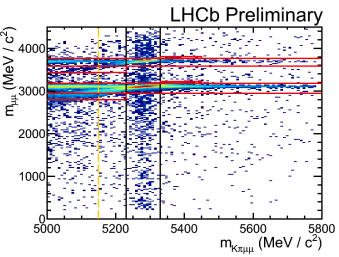


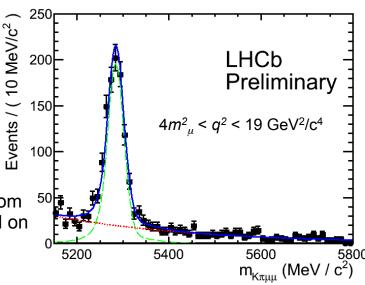


$B^0 \to K^{*0} \mu^+ \mu^-$ Angular Analysis Motivation

Observables highly sensitive to NP contributions to C7⁽¹⁾, C9⁽¹⁾, C10⁽¹⁾

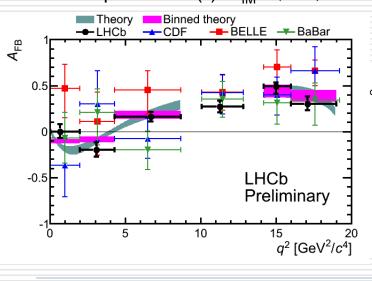
A_{FB} zero-crossing point particularly well predicted by theory

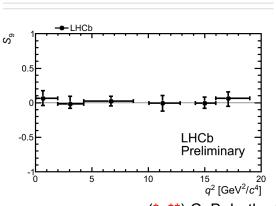


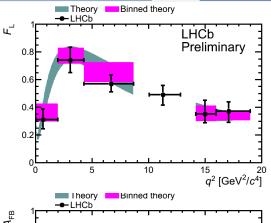

${ m B}^0 o K^{*0} \, \mu^+ \mu^-$ LHCb event selection

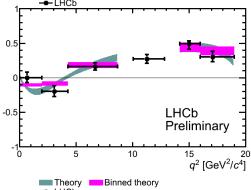
Event selection with a BDT:

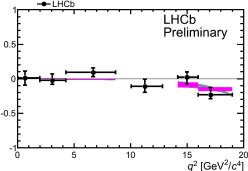
- BDT trained for the Signal with $B^0 \rightarrow K^{*0}J/\psi$ (2010 data)
- BDT trained for the Bkgrd with B⁰→K*⁰ μ*μ mass sidebands
- Info about evt kinematics, vertex & track quality, IP, PID
- $B^0 \rightarrow K^{*0} J/\psi$, $B^0 \rightarrow K^{*0} \Psi(2S)$ vetoes
- Isolate peaking backgrounds and reject with PID requirements: e.g. B⁰_s→ φμ⁺μ⁻ with K→π mis-ID. Total peaking Bkg <2% of signal
- LHCb(1.0 fb⁻¹): 900± 34 signal events
 (BaBar + Belle + CDF ~ 600)
- B/S≈0.25 in region 5230< m_{Kπ μ+μ−}<5330 MeV/c²
- Selection does not induce further biases in angles and q^2 cf reconstruction/trigger- biases that are introduced primarily from the detector geometry- . Modelled using simulation and verified on data using $K^{*0}J/\psi$.

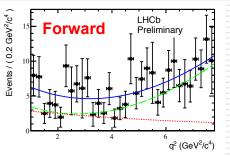


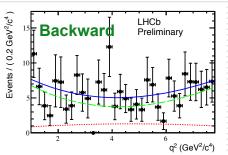


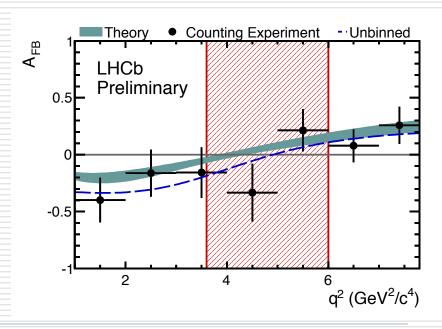

$B^0 \to K^{*0} \mu^+ \mu^-$ Angular Analysis Results



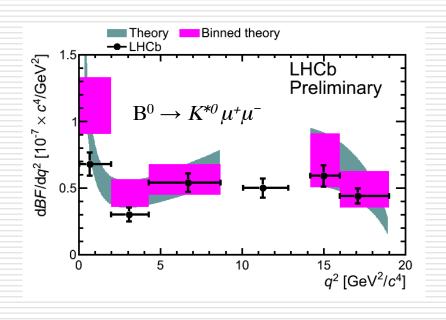

- Un-binned maximum-likelihood 4D fit to 3 angles $(\theta_{\ell}, \theta_{K}, \phi)$ and mass distributions in bins of \mathbf{q}^{2}
- Larger data sample enables measurements of S₃ and A_{IM}
- Error bars include systematic uncertainties
- Data points are centered at the <q²> of signal candidates in data
- Most precise measurements to-date- consistent with the SM prediction (*). $A_{IM} O(10^{-3})$ in SM (**)

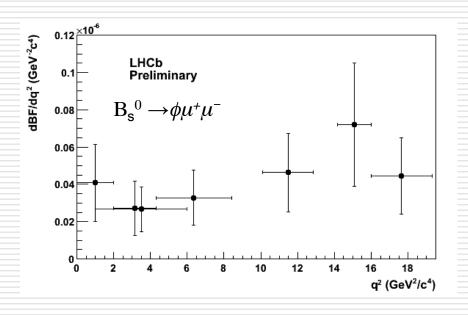

(*, **) C. Bobeth et al. [arXiv: 1105.0376; JHEP 0807 106]




${\rm B^0} \to K^{*0} \mu^+ \mu^- {\rm A_{FB}}$ zero-crossing point

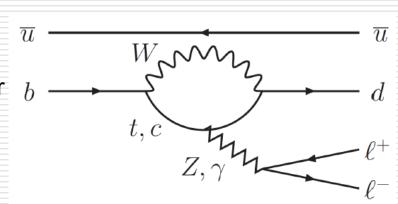
- The SM predicts A_{FB} to change sign at a well defined point in q².
- This zero-crossing point q²₀ is largely free from form-factors uncertainties.
- q_0^2 is extracted through a 2D fit to the forward- and backward-going $m_{K\pi\mu\mu}$ and q^2 distributions.
- The world's first measurement of q_0^2 , at $q_0^2 = 4.9^{+1.1}$ GeV²/c⁴ [Preliminary]
- Consistent with the SM predictions which range from 4÷4.3 GeV²/c⁴ [arXiv:1105.0376, Eur. Phys. J. C41 (2005) 173-178, C47 (2006) 625-641]




 ${
m B^0}
ightarrow K^{*0} \, \mu^+ \mu^-$ and ${
m B_s^{~0}}
ightarrow \phi \, \mu^+ \mu^-$ differential branching ratios LHCb-CONF-2012-008 LHCb-CONF-2012-003

${ m B^0} o K^{*0} \mu^+ \mu^-$ and ${ m B_s^{~0}} o \phi \, \mu^+ \mu^-$ differential BF

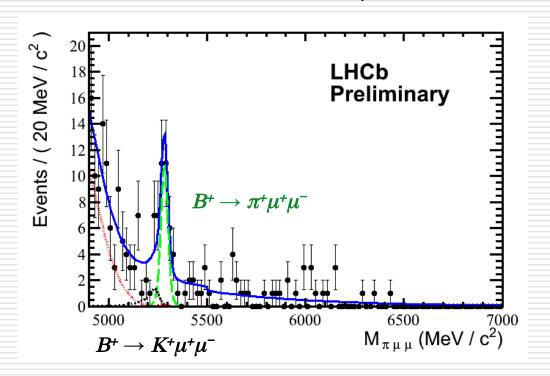
- Differential branching fraction is extracted by fitting the mass distribution and normalising to $B^0 \rightarrow K^{*0}J/\psi$, $B_s \rightarrow \phi J/\psi$
- $B^0 \to K^{*0} \mu^+ \mu^- : 900 \pm 34 \text{ signal events LHCb (1.0 fb}^{-1})$
- $B_s^0 \rightarrow \phi \ \mu^+\mu^- : 77\pm 10 \text{ signal events LHCb (1.0 fb}^{-1})$
- $\mathcal{B}(B_s^{\ 0} \to \phi \ \mu^+\mu^-) = (0.78 \pm 0.10 (\text{stat}) \pm 0.06 (\text{syst}) \pm 0.28 (\mathcal{B})) \ \text{x} \ 10^{-6} [\text{Preliminary}]$
- These are the most precise measurements to-date and are consistent with SM expectations [arXiv:1105.0376v4;J.Phys.G G29(2003) 1103-1118]


First observation of $B^+ \to \pi^+ \mu^+ \mu^-$ LHCb-CONF-2012-006

First observation of $B^+ \to \pi^+ \mu^+ \mu^-$

- ${
 m B}^+ o \pi^+ \mu^+ \mu^-$ decay is a $b o d \mathcal{U}$ transition
- In the SM the branching fraction is ~25x smaller than analogous $B^+ \to K^+ \mu^+ \mu^-$ ($b \to s$) transition and can be enhanced in NP models.

- Can also be used to measure V_{td}/V_{ts} from penguin diagrams
- SM prediction is $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) = 1.96 \pm 0.21 \times 10^{-8}$ (*)
- BELLE set previous best limit at $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) < 6.96 \times 10^{-8}$ at 90% C.L. (**)
- A major background comes from misidentified $B^+ \to K^+ \mu^+ \mu^-$ decays
- A critical analysis issue is separating these two decays
 - The $K-\pi$ separation provided by the LHCb RICH detectors is crucial

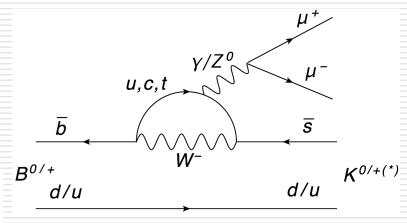

(*) Song Hai-Zhen et al., Comm in Theo Ph 50 (2008) 696 (**) J.T. Wei et al., Phys. Rev. D78 (2008) 011101

First observation of $B^+ \to \pi^+ \mu^+ \mu^-$

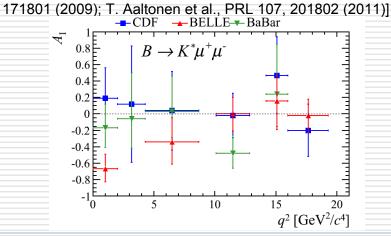
- This is the first observation of a $b \rightarrow dll$ transition
- LHCb (1.0 fb⁻¹): $B^+ \to \pi^+ \mu^+ \mu^-$: 25.3^{+6.7}_{-6.4} signal events
 - 5.2σ excess above background
- The measurement is consistent with the SM prediction

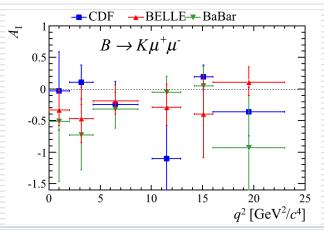
- $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) = (2.4 \pm 0.6 \text{(stat)} \pm 0.2 \text{(syst)}) \times 10^{-8}$. Preliminary
- The rarest B decay ever observed!

Isospin asymmetry in B $\rightarrow K^{(*)}\mu^{+}\mu^{-}$ arXiv:1205.3422



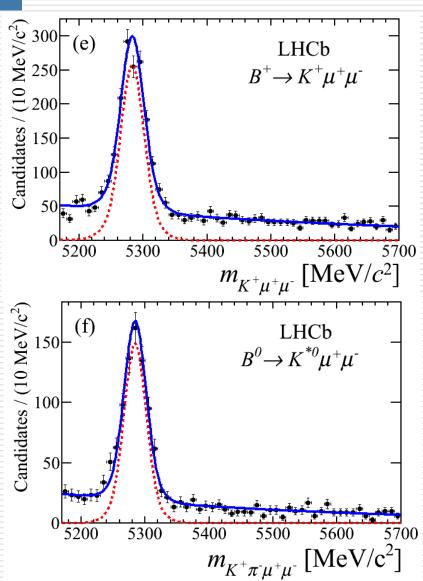
$B \to K^{(*)} \mu^+ \mu^-$ Isospin asymmetry




- B $\rightarrow K^{(*)} \mu^+ \mu^-$ are FCNC decays:
- The Isospin asymmetry A_I in B → K^(*) μ⁺μ⁻
 is defined as:

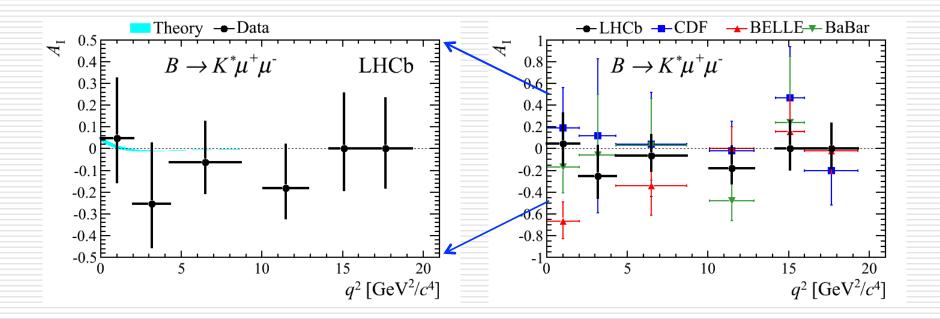
$$A_{I} = \frac{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) - \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}$$

- SM prediction of A_1 is very close to zero e.g. for $B \rightarrow K^* \mu^+ \mu^-$ [T. Feldmann and J. Matias JHEP 01 (2003)074].
- BaBar, Belle and CDF have measured A_I. [B. Aubert et al., arXiv:1204.3933; J.-T. Wei et al., PRL 103,



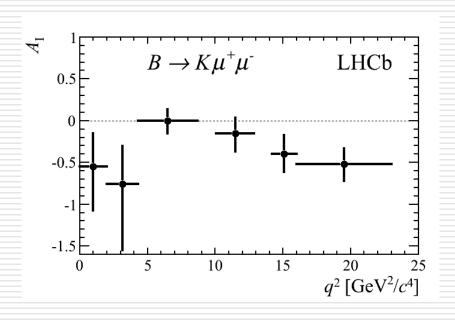
$\mathrm{B} \to \mathit{K}^{(*)} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \, \mathrm{LHCb} \, \mathrm{Analysis}$

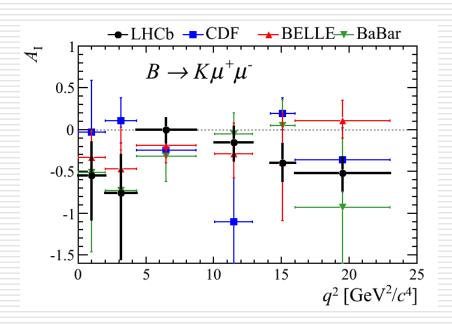
- Measure differential BF of four decay modes
 - $B^+ \rightarrow K^+ \mu^+ \mu^-$
 - $\mathbf{B}^0 \to \mathbf{K}^{*0} \mathbf{\mu}^+ \mathbf{\mu}^-$
 - $B^{+} \rightarrow (K^{*+} \rightarrow K_{s}^{0} \pi^{+}) \mu^{+} \mu^{-}$
 - $B^0 \rightarrow (K^0 \rightarrow K_s^0) \mu^+ \mu^-$
- Decays involving K_s^0 have a low reconstruction efficiency due to long K_s^0 lifetime.
- Correction for detector and selection effects made with simulation (verified to reproduce the data)
- B→ (J/ψ→μ⁺μ⁻)K^(*) decays used to normalize the branching fraction for each decay to cancel systematic uncertainties



$\mathbf{A_I}$ for $\mathrm{B} \to K^* \mu^+ \mu^-$

- A_I for $B \rightarrow K^* \mu^+ \mu^-$ is consistent with zero, as predicted by the SM
- LHCb results in agreement with previous measurements


Theoretical predictions below $q^2 = 8.68 \text{ GeV/c}^2$ by C. Bobeth, G. Hiller and D. van Dyk]

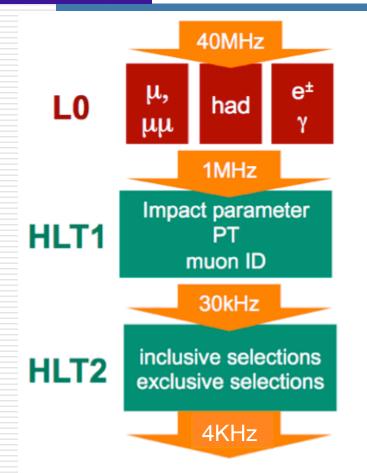


A_I for $B \to K \mu^+ \mu^-$

- A_I for $B \rightarrow K \mu^+ \mu^-$ tends to sit below the SM prediction, which is zero.
- Results agree with previous measurements but nearly all measurements of A_I are negative
- Ignoring the small correction of (syst) errors between each q² bin, the significance of the deviation from zero across q² is 4.4σ (LHCb alone)

Summary

- $\mathrm{B}^0 o K^{*0} \, \mu^+ \mu^-$: [LHCb-CONF-2012-008]
 - World's most precise measurement of the angular observables
 - World's first measurement of the A_{FB} zero-crossing point (q²₀)
 - World's most precise measurement of the branching fraction
- $\mathrm{B_s}^0 o \phi \, \mu^+ \mu^-$: [LHCb-CONF-2012-003]
 - World's most precise measurement of the branching fraction
- $B^+ o \pi^+ \mu^+ \mu^-$: [LHCb-CONF-2012-006]
 - First observation ($b \rightarrow d \mathcal{U}$ transition)
 - Branching fraction measurement consistent with SM (Rarest B decay ever observed)
- Isospin asymmetry in $B \to K^{(*)} \mu^+ \mu^-$: [arXiv:1205.3422 to be submitted to JHEP]
 - B $\rightarrow K^*\mu^+\mu^-$, A results consistent with zero, as expected in SM
 - B $\rightarrow K\mu^{+}\mu^{-}$, A₁ results below SM in the q² region < 4.3 GeV²/c⁴ and > 16 GeV²/c⁴
- LHCb will improve these measurements and has many more in prospect with 2012 (expect ~1.5 fb⁻¹) data!


Backup slides

The LHCb Trigger

23

L0 Hardware	"high p _T " signals in calorimeter and muon systems
HLT1 Software	Partial reconstruction, selection based on one or two (dimuon) displaced tracks, muon ID
HLT2 Software	Global reconstruction (very close to offline) dominantly inclusive signatures – use MVA

- Small event size (60kB)
 - → large bandwidth
- Allows low thresholds

+ Global Event Cuts for events with high multiplicity

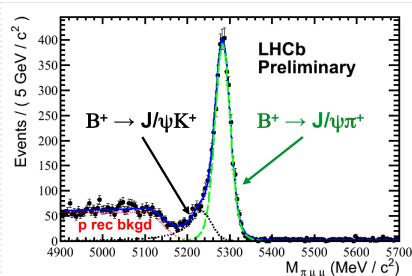
	Charm	Had. B	Lept. B
Overall efficiency	~10%	~40%	~75-90%

${ m B}^0 o K^{*0} \, \mu^+ \mu^-$ Angular Distribution

$$\begin{split} \frac{1}{\Gamma} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_K \, \mathrm{d} \hat{\phi} \, \mathrm{d} q^2} &= \frac{9}{16\pi} \left[\ F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \ + \right. \\ & \left. F_L \cos^2 \theta_K (2 \cos^2 \theta_\ell - 1) \right. + \\ & \left. \frac{1}{4} (1 - F_L) (1 - \cos^2 \theta_K) (2 \cos^2 \theta_\ell - 1) \right. + \\ & \left. S_3 \hat{\ell} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \cos 2 \hat{\phi} \right. + \\ & \left. \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_\ell \right. + \\ & \left. A_{Im} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \sin 2 \hat{\phi} \right. \end{split}$$

Where $\hat{\phi}$ is $\hat{\phi} = \phi + \pi$ if $\phi < 0$ and $\hat{\phi} = \phi$ if $\phi \ge 0$.

$B^+ \to \pi^+ \mu^+ \mu^-$ Analysis



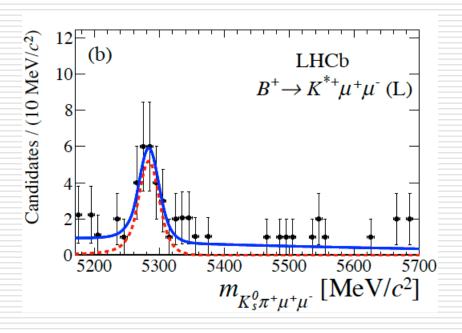
• The issue: separating $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ from misidentified $B^+ \rightarrow K^+ \mu^+ \mu^-$ ($K^+ \rightarrow \pi^+$)

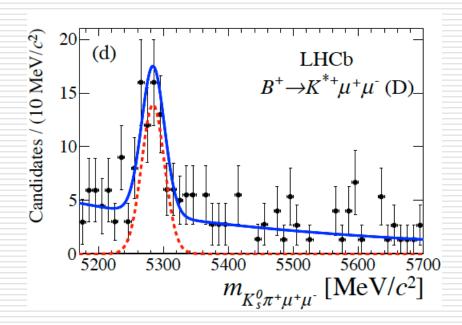
- Use BDT to make selection:
 - Kinematic properties of the B candidate and daughters. B vertex, daughter track and PV quality properties included
 - No PID requirements in the BDT, applied separately
 - B+ \rightarrow (J/ ψ , Ψ (2S))K+ vetoes
 - Peaking backgrounds:
 - B⁺→π⁺π⁺π⁻ expectation and shape from MC included in the fit yield constrained to 0.39±0.04 from MC
 - $B^+ \rightarrow h^+ h^+ h^-$ and $B^+ \rightarrow J/\psi \pi^+$ negligible

Fitting

- Use B⁺ $\to J/\psi K^+$ events to define signal shape and, under $\pi^+\mu^+\mu^-$ hypothesis, shape of mis-identified events from B⁺ $\to K^+\mu^+\mu^-$ ($K^+\to\pi^+$)
- Components for partial reconstructed B decays and combinatorial background
- Validation of the fit method by separating $B^+ \to J/\psi K^+$ and $B^+ \to J/\psi \pi^+$ decays
- Normalize branching fraction using $B^+ \rightarrow J/\psi K^+$

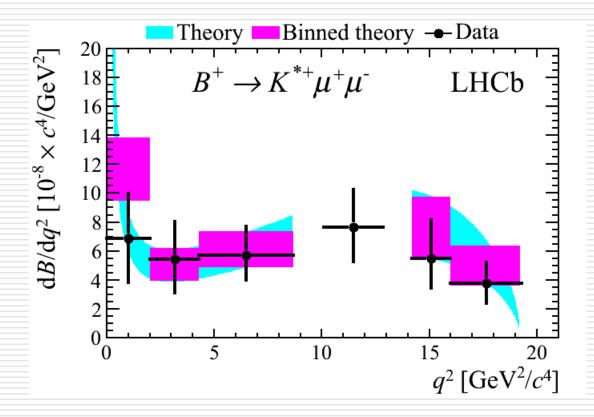
$B \rightarrow K^{(*)} \mu^{+} \mu^{-}$ Selection


- The channels involving K_s^0 are split into two categories based on how the K_s^0 is reconstructed:
 - "Long" (L): Both pions from the K_s^0 have hits inside the VELO and the downstream tracking detectors
 - "Downstream" (D): daughter pions without hits inside the VELO but with hits in the TT upstream the magnet
- L-events have less background use a cut-based selection
- D-events use a BDT selection
- Insofar as possible, use similar selections for the K⁺ channels
- B $\rightarrow (J/\psi \rightarrow \mu^+\mu^-)K^{(*)}$ decays used to normalize the branching fraction for each decay to cancel systematic uncertainties.
 - The normalization of $B^0 \to K^0 \mu^+ \mu^-$ assumes that $\mathcal{B}(B^0 \to K^0 \mu^+ \mu^-) = 2 \times \mathcal{B}(B^0 \to K_s^0 \mu^+ \mu^-)$



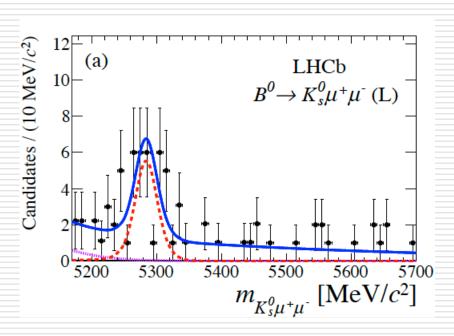
$$\mathcal{B}(\mathrm{B}^+ \to K^{*+} \mu^+ \mu^-)$$

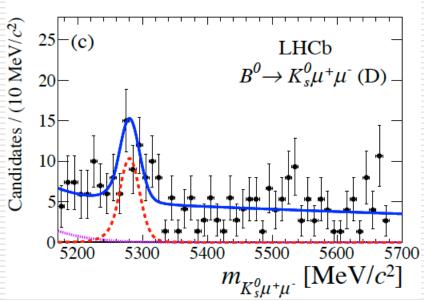
- LHCb measurement: $\mathcal{B}(B^+ \to K^{*+} \mu^+ \mu^-) = (1.16 \pm 0.19) \times 10^{-6}$
- C.f. PDG: $\mathcal{B}(B^+ \to K^{*+} \mu^+ \mu^-) = (1.16 \pm 0.30) \times 10^{-6}$



$$dBF/q^2(B^+ \rightarrow K^{*+} \mu^+ \mu^-)$$

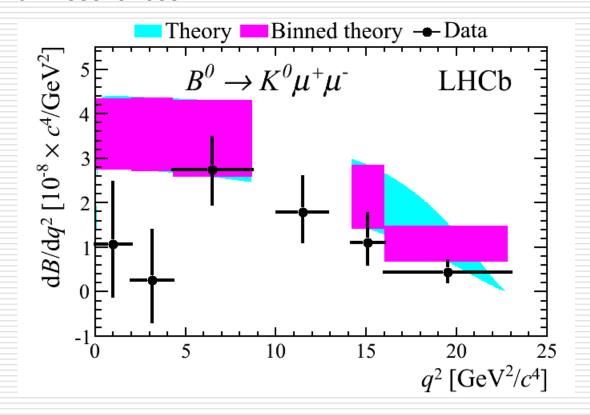
Measurements are consistent with the SM:


Theory prediction from [C. Bobeth, G. Hiller, and D. van Dyk, JHEP 07 (2011) 067, arXiv:1105.0376



$\mathcal{B}(\mathrm{B}^0 \to K^0 \mu^+ \mu^-)$

- Assuming a factor 2 for $K^0 \to K_s^0$ and accounting for $K_s^0 \to \pi^+\pi^-$ branching fraction:
- LHCb measurement: $\mathcal{B}(B^0 \to K^0 \mu^+ \mu^-) = (3.1^{+0.7}_{-0.6}) \times 10^{-7}$
- cf PDG: $\mathcal{B}(B^0 \to K^0 \mu^+ \mu^-) = (4.5 \pm 1.1) \times 10^{-7}$
- $\mathcal{B}(B^0 \to K^0 | + |) = (3.1^{+0.8}_{-0.7}) \times 10^{-7}$
- 5.7 σ excess above background $B^0 \rightarrow K_s^0 \mu^+ \mu^-$



$dBF/q^2(B^0 \rightarrow K^0 \mu^+ \mu^-)$

• There is a deficit of $B^0 \rightarrow K^0 \mu^+ \mu^-$ signal in the q^2 regions which are not adjacent to the charmonium resonances:

Theory prediction from [C. Bobeth, G. Hiller, and D. van Dyk, JHEP 01 (2012) 107, arXiv:1111.2558.