Measurement of ϕ_s at LHCb using $B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

Greig Cowan, on behalf of the LHCb collaboration ICHEP, July 7th 2012

LHCb detector

2008 JINST 3 S08005

CP-violation in the B_s^0 system

Interference between $\bar{b} \rightarrow \bar{c}c\bar{s}$ either directly or via mixing gives rise to a *CP*-violating phase

$$\phi_s^{SM} = -2\beta_s + \delta P = -0.036 \pm 0.002 \,\mathrm{rad} + \delta P$$

• $b \rightarrow \bar{c}c\bar{s}$ dominated by tree-level transitions, $\Phi_D = \arg(V_{cs}V_{cb}^*).$

Small penguin pollution, $\delta P \sim 10^{-3} - 10^{-4}$.

Mixing phase Φ_M = 2 arg(V_{ts}V^{*}_{tb}) ≈ −2β_s.
New physics can modify: φ_s → φSM_s + φ^{NP}_s.

Measuring ϕ_s using $B_s \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

- P → VV: final state is admixture of CP-odd (ℓ = 1) and CP-even (ℓ = 0, 2) with different lifetimes.
- 3 K^+K^- P-wave, 1 S-wave

 $\begin{aligned} \operatorname{CP} | \mathbf{J} / \psi \phi \rangle_{\ell} &= \eta_{f} | \mathbf{J} / \psi \phi \rangle_{\ell} \\ &= (-1)^{\ell} | \mathbf{J} / \psi \phi \rangle_{\ell} \end{aligned}$

 Unbinned log-likelihood fit to statistically disentangle final states.

$$\mathcal{S}(\lambda, m, t, \Omega) = \mathcal{G}(m) \cdot \boldsymbol{\epsilon}(t, \Omega) \cdot \left(\frac{1 + qD}{2} \cdot s(\lambda, t, \Omega) + \frac{1 - qD}{2} \cdot \bar{s}(\lambda, t, \Omega)\right) \otimes R_t$$

Acceptance, flavour tagging, time resolution.

Physics: $\lambda = (\phi_{s}, \Gamma_{s}, \Delta\Gamma_{s}, \Delta m_{s}, \delta_{\parallel}, \delta_{\perp}, \delta_{S}, |A_{\parallel}|^{2}, |A_{\perp}|^{2}, |A_{S}|^{2})$

Selection

- Di-muon trigger: $p_{\rm T} > 0.5 \, {\rm GeV}/c$.
- Simple kinematic selection: ~ 21200 candidates

Decay time resolution

• Use prescaled sample of prompt-J/ ψ events to extract resolution scale factor.

Angular acceptance

- Angular acceptance of ±5% due to detector geometry (10 < Θ < 400 mrad) and implicit momentum cuts on final state particles.
- Evaluate using MC.
- Apply to fit via angular "moments" of the PDF or 3D analytic parameterisation of orthogonal polynomials.

Flavour tagging

- Sensitivity to ϕ_s comes from events tagged as B_s^0 or $\bar{B_s^0}$.
- Specialised tagging algorithms analyse event to determine initial flavour (talk from S. Vecchi).
- Effective OS tagging efficiency of $\varepsilon_{tag} \mathcal{D}^2 = (2.29 \pm 0.27)\%$

Projection of time dependent angular fit

8/15

Projection of time dependent angular fit

Preliminary							
Parameter	Value	Stat.	Syst.				
$\Gamma_{\rm s} \ [{\rm ps}^{-1}]$	0.6580 0.0054		0.0066				
$\Delta \Gamma_{\rm s} [{\rm ps}^{-1}]$	0.116	0.018	0.006				
$ A_{\perp}(0) ^2$	0.246	0.010	0.013				
$ A_0(0) ^2$	0.523	0.007	0.024				
F_S	0.022	0.012	0.007				
δ_{\perp} [rad]	2.90	0.36	0.07				
δ_{\parallel} [rad]	[2.81,	0.13					
δ_s [rad]	2.90	0.36	0.08				
ϕ_s [rad]	-0.001	0.101	0.027				

Systematics

- Neglecting potential CPV in mixing and decay.
- Knowledge of angular acceptance.
- Background description.
- Decay time acceptance.

Ongoing studies to reduce these for publication

Resolving the ambiguity

$$(\phi_{s}, \Delta \Gamma_{s}, \delta_{\parallel} - \delta_{0}, \delta_{\perp} - \delta_{0}, \delta_{\mathrm{S}} - \delta_{0}) \leftrightarrow (\pi - \phi_{s}, -\Delta \Gamma_{s}, \delta_{0} - \delta_{\parallel}, \pi + \delta_{0} - \delta_{\perp}, \delta_{0} - \delta_{\mathrm{S}})$$

• Perform angular fit in 4 bins of K^+K^- mass.

• $\delta_{S\perp} = \delta_S - \delta_{\perp}$ should fall across $\phi(1020)$ mass.

arXiv:1204.5675v3, submitted to Phys. Lett. 1

ϕ_s from $B_s^0 \to J/\psi \pi^+ \pi^-$

- $\blacksquare B_s^0 \to J/\psi \pi^+ \pi^- \text{ is another } \bar{b} \to \bar{c}c\bar{s}.$
- Not vector-vector final state \Rightarrow no complex angular analysis!
- $\pi^+\pi^-$ is > 97.7% CP-odd @ 95% Conf. Level (see talk from C. Linn).

• $\Gamma_{s}, \Delta\Gamma_{s}$ constrained from $B_{s}^{0} \rightarrow J/\psi\phi$ analysis (see talk from A. Phan on B_{s}^{0} lifetimes) • Δm_{s} from LHCb (Phys. Lett. B709 (2012) 177).

Simultaneous fit of $B_s^0 \to J/\psi \phi$ and $B_s^0 \to J/\psi \pi^+ \pi^-$

 ϕ_s from $B_s^0 \to J/\psi \pi^+ \pi^-$

$$\phi_s = -0.002 \pm 0.083 \pm 0.027 \,\mathrm{rad}$$

 $\phi_s = -0.044^{+0.090}_{-0.085} \,\mathrm{rad}, \qquad \Delta\Gamma_s = +0.105 \pm 0.015 \,\mathrm{ps}^{-1}$

Impact on New Physics

 Model independent analysis places strong constraints on size of NP in M₁₂.

■ **Need** independent a^s_{fs} measurement (see talk from M. Artuso).

■ **Need** increased precision on ϕ_s .

Summary

- Excellent dectector performance:
 - 1 Clean signals.
 - **2** Decay time resolution: \sim 45 fs.
 - **3** OS tagging: $\varepsilon_{\text{tag}} \mathcal{D}^2 = (2.29 \pm 0.27)\%$.
- LHCb made most precise measurement of ϕ_s ($B_s^0 \rightarrow J/\psi \phi$, $J/\psi \pi \pi$).
- \blacksquare First direct observation of non-zero $\Delta\Gamma_s \Rightarrow$ resolved sign ambiguity.

Backup

Brief introduction to B_s^0 -meson mixing and decay

$$i\frac{\partial}{\partial t} \left(\begin{array}{c} B_{s}^{0}(t)\\ \bar{B}_{s}^{0}(t)\end{array}\right) = \left(\mathbf{M} - i\frac{\mathbf{\Gamma}}{2}\right) \left(\begin{array}{c} B_{s}^{0}(t)\\ \bar{B}_{s}^{0}(t)\end{array}\right) \qquad \begin{bmatrix} b & t & V_{ts}^{*} & s \\ \\ \bar{B}_{s} & \downarrow \\ W^{-} & \downarrow \\ \hline S & V_{ts}^{*} & \bar{t} & V_{tb} \\ \hline S & V_{ts}^{*} & \bar{t} & V_{tb} \\ \end{bmatrix} \\ |B_{s,L}^{0}\rangle = p|B_{s}^{0}\rangle + q|\bar{B}_{s}^{0}\rangle \\ |B_{s,H}^{0}\rangle = p|B_{s}^{0}\rangle - q|\bar{B}_{s}^{0}\rangle$$

Some relevant parameters

$$\begin{split} M_{B_s^0} &= \frac{M_H + M_L}{2}, \qquad \Gamma_s = \frac{\Gamma_L + \Gamma_H}{2} \\ \Delta m_s &= M_H - M_L \approx 2M_{12}, \qquad \Delta \Gamma_s = \Gamma_L - \Gamma_H \approx 2\Gamma_{12}\cos\varphi \\ &\varphi &= \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \end{split}$$

17/15

Source	Г	$\Delta\Gamma_s$	A^2	A_0^2	Fς	δ_{\parallel}	δ_{\perp}	δ_s	ϕ_{s}
	[ps ⁻¹]	[ps ⁻¹]	-	0	5	[rad]	[rad]	[rad]	[rad]
Description of background	0.0010	0.004	-	0.002	0.005	0.04	0.04	0.06	0.011
Angular acceptances	0.0018	0.002	0.012	0.024	0.005	0.12	0.06	0.05	0.012
t acceptance model	0.0062	0.002	0.001	0.001	-	-	-	-	-
z and momentum scale	0.0009	-	-	-	-	-	-	-	-
Prod. asymmetry $(\pm 10\%)$	0.0002	0.002	-	-	-	-	-	-	0.008
CPV mixing & decay $(\pm 5\%)$	0.0003	0.002	-	-	-	-	-	-	0.020
Fit bias	-	0.001	0.003	-	0.001	0.02	0.02	0.01	0.005
Quadratic sum	0.0066	0.006	0.013	0.024	0.007	0.13	0.07	0.08	0.027

ϕ_{s}

1 Neglecting potential CPV in mixing and decay.

- Fit for $|\lambda|$ shows that $\Delta(|\lambda|^2) = \pm 5\%$ is a reasonable variation.
- Evaluate using toys generating with $|\lambda|^2 = 0.95, 1.05$ and fitting with $|\lambda|^2 = 1$.
- 2 Knowledge of angular acceptance.

Source	Г	ΔΓ₅	A ²	A_0^2	Fs	δ_{\parallel}	δ_{\perp}	δ_{s}	ϕ_{s}
	[ps ⁻¹]	[ps ⁻¹]		-		[rad]	[rad]	[rad]	[rad]
Description of background	0.0010	0.004	-	0.002	0.005	0.04	0.04	0.06	0.011
Angular acceptances	0.0018	0.002	0.012	0.024	0.005	0.12	0.06	0.05	0.012
t acceptance model	0.0062	0.002	0.001	0.001	-	-	-	-	-
z and momentum scale	0.0009	-	-	-	-	-	-	-	-
Prod. asymmetry (± 10%)	0.0002	0.002	-	-	-	-	-	-	0.008
CPV mixing & decay $(\pm 5\%)$	0.0003	0.002	-	-	-	-	-	-	0.020
Fit bias	-	0.001	0.003	-	0.001	0.02	0.02	0.01	0.005
Quadratic sum	0.0066	0.006	0.013	0.024	0.007	0.13	0.07	0.08	0.027

$\Delta \Gamma_s, \Gamma_s$

- **1** Background description.
- **2** Upper decay time acceptance affects Γ_s .
- **3** Trigger acceptance affects $\Delta\Gamma_s$, amplitudes.