Flavour Tagging 00 00 0 Results of analyses using tagging O O

"Flavour tagging at LHCb and measurements of B meson oscillations"

S.Vecchi- INFN Ferrara, Italy

on behalf of the LHCb collaboration

ICHEP 2012 - Melbourne, July 4th-11th 2012

The LHCb experiment and physics motivations	Flavour Tagging	Results of analyses using tagging	
	00 00 0		

Outline

1 The LHCb experiment and physics motivations

2 Flavour Tagging

- Tagging algorithms
- Flavour Tagging optimization & calibration
- Flavour Tagging performance

3 Results of analyses using tagging

- Measurement of $B^0_{d/s} \bar{B}^0_{d/s}$ mixing frequency
- Measurement of $B_{d/s}^{0} \bar{B}_{d/s}^{0}$ mixing phases

4 Summary

Flavour Tagging	Results of analyses using tagging
00	

The LHCb experiment: precision studies of *b* and *c*-hadron decays (CP violation, rare decays) \rightarrow test SM/indirect evidence of NP

Requirements:

- High yield \rightarrow efficient trigger and selection, large $\bar{b}b/\bar{c}c$ production cross section
- \blacksquare Low background \rightarrow mass resolution, particle identification

For time dependent CP asymmetries in the B sector:

- tag the initial flavour → tagging power: particle identification, impact parameter resolution.
- Measure the *B* decay time \rightarrow resolution (B_s^0) .

LHCb detector:

2008 JINST 3 S08005

- Vertexing&Tracking: excellent resolutions
- Particle identification: $\pi/K/p$ (RICH), $\pi/e/\gamma$ (ECAL), μ (MUON)
- Trigger: L0 (hardware: highp_T e/γ/hadron/μ candidates), HLT1& HLT1 (software)

The LHCb experiment and physics motivations	Flavour Tagging	Results of analyses using tagging	
	•0		
	00		

Tagging algorithms

Tag the initial B flavour

OS tagging: exploit the properties of the decays of the *b*-hadron opposite to the signal *B*

• μ , $e(b \rightarrow cl^- \bar{\nu}_l)$, $K(b \rightarrow c \rightarrow s)$, Q_{vtx} (inclusive secondary vertex reconstruction) **SS tagging**: exploit the hadronization process of the signal B, or in the decays of excited states B^{**}

SS π (tag the B_d and B^+), **SS**K (tag the B_s)

The LHCb experiment and physics motivations	Flavour Tagging O● ○○	
Tagging algorithms		

Tag the initial B flavour

Each tagging algorithm determine:

- **tag decision**: $q_i = \pm 1,0$ for the initial signal *b*-hadrons containing a \bar{b}/b quark
 - charge of the lepton/kaon/inclusively reconstructed secondary vertex (OS)
 - charge of the pion/kaon (SS)
- estimate of the mistag probability: η_i
 - based on a Neural Network (inputs: kinematical & geometrical information on the tagger and the event properties). Trained on MC.
 - **\eta_i** calibrated using data.

Combination of taggers based on (q_i, η_i) if more than one tagger is available $(\rightarrow q, \eta)$

Tagging performance:

- $\varepsilon_{tag} = \frac{R+W}{R+W+U}$, \rightarrow can be measured in any channel
- $\omega = \frac{W}{R+W} \rightarrow$ can only be measured in flavour-specific channel and used to measure *CP* violation asymmetries. If η is calibrated (= ω) use it ev-by-event.
- Tagging power: $\varepsilon_{eff} = \varepsilon_{tag} (1 2\omega)^2 = \varepsilon_{tag} D^2$

The LHCb experiment and physics motivations	Flavour Tagging ○○ ●O ○	
Elayour Tagging optimization & calibration		

Flavour Tagging optimization ...

Tagging performance optimized using data and several flavour-specific channels. AIM: to find the set of cuts that maximize the ε_{eff} of each tagger and of the combination of taggers.

Channel	Tagger	Yield $(1fb^{-1})$	B/S	
$B^0 \rightarrow D^{*-} \mu^+ \nu_\mu$	OS & SSπ	1.3M	~ 0.14	largest control channel
$B^+ \rightarrow J/\psi K^+$	OS & SSπ	250k	~ 0.034	reference for $B_s^0 \rightarrow J/\psi \phi$
$B^0 \rightarrow J/\psi K^{*0}$	OS & SSπ	107k	~ 0.40	useful for $B^0_s ightarrow J/\psi \phi$
$B^0 \rightarrow K^+ \pi^-$	OS & SSπ	20k	~ 0.5	reference for $B^0 \to H^+ H^-$
$B^0 \rightarrow D^- \pi^+$	OS & SSπ	170k	~ 0.04	reference for $B_s^0 \rightarrow D_s^- \pi^+$
$B^+ ightarrow ar{D}^0 \pi^+$	OS & SSπ	130k	~ 0.02	useful for $B_s^0 \rightarrow D_s^- \pi^+$
$B_s^0 \rightarrow D_s^- \pi^+$	OS & SSK	26k	$\sim 0.1 0.4$	the only c.c. for SSK

Determine the mistag:

- For B^+ just compare the tag decision with the observed flavour: $\omega = W/(R+W)$
- For B^0 fit the time-dependent mixing asymmetry: $\mathcal{A}(t) \propto (1-2\,\omega)\cos(\Delta m t)$

The LHCb experiment and physics motivations	Flavour Tagging ○○ ○● ○	
Flavour Tagging optimization & calibration		

... and calibration

Use the $B^+ \to J/\psi K^+\,$ channel to perform the calibration of the predicted mistag, η

- first to the single taggers
- then to the combination (OS), to account for the correlation among taggers.

Linear parametrization:

• $\omega = p_0 + p_1(\eta - \langle \eta \rangle) \longrightarrow \eta_c$

 $p_0 = 0.392 \pm 0.002 \pm 0.009$ $p_1 = 1.035 \pm 0.021 \pm 0.012$ $\langle \eta_c \rangle = 0.391$

 systematic uncertainties account for differences related to signal B flavour, tag decision, running conditions.

The calibration is validated using other control channels $(B^0\to J/\psi K^{*0}$, $B^0\to D^{*-}\mu^+\nu_\mu$, ...).

The L	-HCb	and ph	vsics mot	

Flavour Tagging	Results of analyses using tagging	
00		
00		
•		

Flavour Tagging performance

Flavour Tagging optimized performance

Single tagger performances:

$B^+ -$	$J/\psi K^+$, 2013	1 data, 1 fb^{-1} ,	LHCb-CONF-2012-026
	ε_{tag} (%)	ω (%)	$arepsilon_{tag} \mathcal{D}^2$ (%)
μ	5.20±0.04	30.8±0.4	0.77 ± 0.04
е	2.46±0.03	$30.9 {\pm} 0.6$	$0.36 {\pm} 0.03$
K	17.67±0.08	39.33±0.24	$0.81{\pm}0.04$
$Q_{ m vtx}$	18.46±0.08	40.31±0.24	0.70±0.04

• OS combination (using per-event mistag):

2011 data	a, 0.37 <i>fb</i> ⁻¹ ,	EPJ C (2012) 7	<mark>72, 2022</mark>
	ε_{tag} (%)	ω (%)	$arepsilon_{tag} \mathcal{D}^2$ (%)
$B^+ ightarrow J/\psi K^+$	27.3±0.1	$36.1{\pm}0.3{\pm}0.8$	$2.10{\pm}0.08{\pm}0.24$
$B^0 ightarrow J/\psi K^{*0}$	27.3 ± 0.3	$36.2{\pm}0.3{\pm}0.8$	$2.09{\pm}0.09{\pm}0.24$
$B^0 o D^{*-} \mu^+ u_\mu$	$30.1 {\pm} 0.1$	$35.5{\pm}0.3{\pm}0.8$	$2.53{\pm}0.10{\pm}0.27$

differences among channels are due to different trigger

Flavour Tagging	Results of analyses using tagging	
00 00	• •	

Measurement of $B^0_{d/s} - \bar{B}^0_{d/s}$ mixing frequency

$B^0_{d/s} - \bar{B}^0_{d/s}$ oscillations: mixing frequencies

Measurement of the $B_d^0 - \bar{B}_d^0$ mixing frequency LHCb-CONF-2011-010

Measurement of the $B_s^0 - \bar{B}_s^0$ mixing frequency Phys.Lett.B 709 (2012) 177, LHCb-CONF-2011-50

SSK preliminary optimization using prompt $D_s^\pm
ightarrow \phi \pi^\pm$

00 0	Flavour Tagging	Results of analyses using tagging	
	00		
00		•	

Measurement of $B^0_{d/s} - \bar{B}^0_{d/s}$ mixing phases

 $B_{d/s}^0 - \bar{B}_{d/s}^0$ oscillations: mixing phases

 $\begin{array}{l} \mbox{Measurement of } \sin(2\beta) \mbox{ in } B^0 \rightarrow J/\psi K_s^0 \\ \hline \mbox{LHCb-CONF-2011-004} \\ \mbox{Preliminary:} \\ S_{J/\psi K_s^0} = 0.53^{+0.28}_{-0.29} (\mbox{stat.}) \pm 0.05 (\mbox{sys}) \\ (\sin(2\beta) = 0.673 \pm 0.023 \mbox{ World average, PDG}) \end{array}$

$$\frac{\varepsilon_{tag} \mathcal{D}^2}{\mathsf{SS}\pi + \mathsf{OS}} = 2.82 \pm 0.87\%$$

Most precise measurement of the $B_s^0 - \bar{B}_s^0$ mixing phase ϕ_s and $\Delta\Gamma_s$ (\rightarrow see G.Cowan's presentation)

LHCb-CONF-2012-002, Phys.Rev.Lett. 198 (2012) 101803,

Phys.Lett.B 707 (2012) 497, arXiv:1204.5675

OS	$\varepsilon_{tag}D^2$	
$B_s^0 \rightarrow J/\psi \phi$	$2.29{\pm}0.07{\pm}0.26\%$	(*)
$B_s^0 \rightarrow J/\psi f_0(980)$	2.12±0.26%	
$B_s^0 \rightarrow J/\psi \pi \pi$	$2.43{\pm}0.08{\pm}0.26\%$	(*)

(*) OS reoptimized on the full 1.0 fb $^{-1}$ 2011 data

The LHCb experiment and physics motivations	Flavour Tagging	Results of analyses using tagging	Summary
	00 00		

Summary

Flavour tagging is a fundamental ingredient for measurements of B^0 oscillations and time-dependent CP asymmetries.

Using flavour-specific decays it is possible to measure, optimize and calibrate the performance of flavour tagging on data.

several channels used as reference or validation:

$$\blacksquare$$
 OS&SS: $B^+\to J/\psi K^+$, $B^0\to J/\psi K^{*0}$, $B^0\to D^{*-}\mu^+\nu_\mu$, $B^0_d\to D^-\pi^+$

SSK: preliminary optimization using prompt $D_s^{\pm} \rightarrow \phi \pi^{\pm}$

Flavour tagging was already used in several physics measurements:

- best measurement of $\Delta m_s = 17.725 \pm 0.041 (\text{stat}) \pm 0.026 (\text{sys}) \ ps^{-1}$
- best measurement of ϕ_s (\rightarrow see G.Cowan's presentation)

Prospects:

• SSK improved tagging power that requires the whole 2011 data sample of 1 fb⁻¹ of $B_s^0 \rightarrow D_s^- \pi^+$ for optimization and calibration

The LHCb experiment and physics motivations	Flavour Tagging	Results of analyses using tagging	Summary
	00		

Backup

The LHCb experiment and physics motivations	Flavour Tagging	Results of analyses using tagging	Summary
	00		
	00		

Flavour Tagging: combination of taggers

The tagging optimization required also that the predicted mistag probability η is calibrated.

In case multiple taggers give a response use (q_i, η_i) to achieve the best combination and to determine the combined probability:

$$\begin{split} p(b) &= \prod_{i} \left(\frac{1+q_i}{2} - q_i(1-\eta_i) \right), \quad p(\bar{b}) = \prod_{i} \left(\frac{1-q_i}{2} + q_i(1-\eta_i) \right) \\ P(b) &= \frac{p(b)}{p(b) + p(\bar{b})}, \quad P(\bar{b}) = 1 - P(b) \end{split}$$

- the combined tagging decision is d=-1 and $\eta=1-P(b)$ if $P(b) > P(\bar{b})$ (d=+1 and $\eta=1-P(\bar{b})$ otherwise)
- Use η event-by-event in *CP* analyses to re-weight the events \rightarrow increase the overall tagging power:

$$\varepsilon_{\text{eff}}^{ev-by-ev} = rac{1}{N}\sum_{i}^{R+W} \mathcal{D}_{i}^{2} > \varepsilon_{\text{tag}} \langle \mathcal{D} \rangle^{2} = \varepsilon_{\text{eff}}$$

Use η to separate the events in categories of events with similar mistag & gain in tagging performances (statistical independent samples)

Flavour Tagging	Results of analyses using tagging
00	

$B_d^0 - \bar{B}_d^0$ oscillations

LHCb-CONF-2011-010 [?]

Summarv

Analysis of $B^0
ightarrow D^- (K^+ \pi^- \pi^-) \pi^+$ channel: 6k signal events

- Use a double Gaussian time resolution model from Monte Carlo (<σ_t>=49fs)
- proper time acceptance from Monte Carlo
- Use *per-event* mistag probability with free calibration parameters (different trigger&selection with respect to the $B^+ \rightarrow J/\psi K^+$ channel.)

Systematic uncertainties on Δm_d		
source	$\Delta(\Delta m_d) \text{ [ps}^{-1}\text{]}$	
proper time resolution [40-63] fs	0.000	
proper time acceptance	0.002	
variation of $PDF(\eta)$	0.000	
floating fit parameters	0.001	
double Gaussian mass signal PDF	0.001	
z-scale (~0.1%)	0.0005	
momentum scale ($\sim 0.1\%$)	0.0005	
Sum	0.003	

The LHCb		and ph	vsics mot	
THE LITER	experimente	und ph	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Flavour Tagging	Results of analyses using tagging	Summ
00		

$B_s^0 - \bar{B}_s^0$ oscillations

LHCb-CONF-2011-050 [?]

Analysis of $B_s^0 \rightarrow D_s^- \pi^+$ channel: 9.2k signal events from $D_s^- \rightarrow \phi \pi^-$, K^*K^- and non res. $K^+K^-\pi^-$

- Use per-event time resolution → calibration on data using prompt D_s&π: S_{σt} = 1.37 ± 0.01
 - $<\sigma_t>=$ 45 fs $(D_s\pi)$
- Tagging:
 - OS: Use *per-event* mistag probability
 - SSK: use the decision fit for an average value
 - OS&SSK: choose one with the best predicted mistag

 $\epsilon_{eff}^{OS+SSK} = 4.3 \pm 0.9$ %

Proper time acceptance from Monte Carlo.

source	$\Delta_{\Delta m_s}[ps^{-1}]$
decay time resolution $S_{\sigma_t} = [1.25 - 1.45]$	0.001
decay time resolution model	0.001
decay time acceptance	0.000
diff. signal shape in mass fit	0.003
variation of η and σ_t PDFs	0.001
z-scale (0.1%)	0.018
momentum scale (0.1%)	0.018
$\Delta\Gamma_s = [0 - 0.2] \times \Gamma_s$	0.002
total systematic uncertainties	0.026

arv

Flavour Tagging	Results of analyses using tagging	Sumn
00		

Measurement of $\sin(2\beta)$ in $B^0 \rightarrow J/\psi K_s^0$

280 signal tagged events (trigger "unbiased" & "biased")

 \blacksquare use event-by-event mistag (calibrated on $B^0 \to J/\psi K^{*0}$)

 $S_{J/\psi K_s^0} = 0.53^{+0.28}_{-0.29} \pm 0.05$ $\sin(2\beta) = 0.673 \pm 0.023$ World average

Systematic uncertainties to S in absolute terms.

Source	uncertainty
tagger calibration	0.044
per-event mistags p.d.f.	0.016
Δm_d uncertainty, z scale	0.0017
proper time resolution	0.0085
high propertime acceptance	0.00018
biased events acceptance	0.0039
biased TIS events acceptance	0.0063
production asymmetry	0.024
total (sum in squares)	0.054

LHCb-CONF-2011-004

Flavour Tagging	Results of analyses using tagging
00	

Flavour tagging: comparison with other experiments

	experiment	$\varepsilon_{tag} \mathcal{D}^2 \ \%$	notes
OS	LHCb	$2.1{\pm}0.1$	$B ightarrow J/\psi X$ channels
		$2.5{\pm}0.1$	$B^0 ightarrow D^{st -} \mu^+ u_\mu$
		3.4±0.9	$B_{(s)} \rightarrow D_{(s)}\pi$ channels
	CDF	$1.54{\pm}0.05$	$B \rightarrow D \mu X$
		$1.2{\pm}0.2$	$B^+ ightarrow J/\psi K^+$
	D0	$2.48{\pm}0.21$	$B ightarrow D \mu X$
	B-factories	\sim 30	coherent $B-ar{B}$ production
SSK	LHCb	1.3±0.4	preliminary optimization using prompt D_s
	CDF	$3.5{\pm}1.4$	$B_s^0 ightarrow D_s(3)\pi$
OS&SSK	D0	4.68±0.54	for $B^0_s ightarrow J/\psi \phi$

Summary