

Studies of <u>hadronic B decays to</u> final states containing <u>open charm</u> mesons at LHCb

07.07.2012 ICHEP 2012 Melbourne, Australia Alexandra MARTÍN SÁNCHEZ (LAL, Orsay, France) on behalf of the LHCb collaboration

Heavy flavour physics at LHCb

2

- LHCb detector well suited for the study of heavy flavoured hadronic decays, thanks to:
 - Geometry, $2 < \eta < 5$.
 - Vertex locator:
 - Precise reconstruction of primary and secondary vertices (resolution = 45 fs for $B_s \rightarrow J/\psi \phi$ and for $B_s \rightarrow D_s \pi$).
 - RICHs particle identification detectors:
 - Excellent K π separation (K identification efficiency = 95 % with 5 % of pion misidentification).
 - LHC collision energy:
 - All type of B hadrons produced (B[±], B⁰, B⁰, b-baryons, B[±]).
 - Big boost, long-lived particles fly over long distances.
 - Easy secondary vertex separation.
 - Hadronic trigger (HCAL+ECAL):
 - Able to select B decays to open charm purely hadronic final states.

07.07.2012

Heavy flavour physics at LHCb

- $B \rightarrow D X$ decays at LHCb:
 - Important for precise CKM γ Π measurements at tree level.
 - *c.f.* A. Powell's presentation this afternoon.
 - Check CKM mechanism consistency Π (New Physics effects).
 - Observations of new decay modes.
- Outline of this talk:
 - $B^0 \rightarrow D K^{*0}$

$$B_{(s)}^{0} \rightarrow \overline{D}{}^{0} K^{+} K^{-}$$

LHCb-CONF-2012-024

Preliminary

07.07.2012

$B^0 \rightarrow D K^{*0}$

Sensitivity to the CKM weak phase γ:

- □ Both decays colour suppressed \rightarrow enhanced interference.
- Small branching fractions.
- Different methods to extract γ:
 - GLW (M. Gronau, D. London, D. Wyler): D → K K (CP eigenstates) (Phys. Lett. B253(3-4), 483 – 488 and Phys. Lett. B 265(1-2), 172 – 176)
 - ADS (D. Atwood, I. Dunietz, A. Soni): $D \rightarrow K \pi$ (flavour specific final state) (Phys. Rev. D 63(3), 036005 and Phys. Rev. Lett. 78(17), 3257–3260)
 - GGSZ (A. Giri, Y. Grossman, A. Soffer, J. Zupan): D → multi-body decay (Phys. Rev. D 68(5), 054018)
 - $K^{*0} \rightarrow K^+ \pi^- \rightarrow \text{self-tagged decay.}$

07.07.2012

$B^0 \rightarrow D K^{*0}$ analysis

6

- Based on 2011 LHCb data sample: 1.0 fb⁻¹.
- Cut-based selection: kinematics, vertex quality, PID (DLL_{K- π}).
- Background from charmless decays (such as B⁰ → K⁻ π⁺ K^{*0}, etc.) removed by D meson flight distance significance cut.
- $\square \quad D_{(s)}^{-} h^{+} \text{ contributions vetoed.}$
- □ $D^{*0} K^{*0}$ partially reconstructed background ($D^{*0} \rightarrow D^0 \pi^0/\gamma$) and $D^0 \rho^0$ cross-feed (π misidentified as K) modeled in the fit to the invariant mass.
- Unbinned maximum likelihood fit to the invariant mass distribution.
 - Signal and background shapes modeled from simulation.
 - Dominant systematic uncertainty comes from the fit model.

$$\mathsf{D} \to \mathsf{K}^+ \, \mathsf{K}^{\text{-}}, \, \mathsf{K}^{\text{-}} \, \pi^+$$

$$\begin{aligned} \mathcal{A}_{d}^{KK} &= \frac{\Gamma(\overline{B}^{0} \to D_{[K^{+}K^{-}]}\overline{K}^{*0}) - \Gamma(B^{0} \to D_{[K^{+}K^{-}]}\overline{K}^{*0})}{\Gamma(\overline{B}^{0} \to D_{[K^{+}K^{-}]}\overline{K}^{*0}) + \Gamma(B^{0} \to D_{[K^{+}K^{-}]}\overline{K}^{*0})} \\ \mathcal{R}_{d}^{KK} &= \frac{\Gamma(\overline{B}^{0} \to D_{[K^{+}K^{-}]}\overline{K}^{*0}) + \Gamma(B^{0} \to D_{[K^{+}K^{-}]}\overline{K}^{*0})}{\Gamma(\overline{B}^{0} \to D_{[K^{-}\pi^{+}]}\overline{K}^{*0}) + \Gamma(B^{0} \to D_{[K^{+}\pi^{-}]}\overline{K}^{*0})} \\ \mathcal{A}^{fav} &= \frac{\Gamma(\overline{B}^{0} \to D_{[K^{-}\pi^{+}]}\overline{K}^{*0}) - \Gamma(B^{0} \to D_{[K^{+}\pi^{-}]}\overline{K}^{*0})}{\Gamma(\overline{B}^{0} \to D_{[K^{-}\pi^{+}]}\overline{K}^{*0}) + \Gamma(B^{0} \to D_{[K^{+}\pi^{-}]}\overline{K}^{*0})} \\ \mathcal{A}_{s}^{KK} &= \frac{\Gamma(\overline{B}^{0}_{s} \to D_{[K^{-}\pi^{+}]}\overline{K}^{*0}) - \Gamma(B^{0}_{s} \to D_{[K^{+}\pi^{-}]}\overline{K}^{*0})}{\Gamma(\overline{B}^{0}_{s} \to D_{[K^{-}\pi^{+}]}\overline{K}^{*0}) + \Gamma(B^{0} \to D_{[K^{+}\pi^{-}]}\overline{K}^{*0})} \end{aligned}$$

07.07.2012

 $\mathcal{A}_d^{\text{fav}} = -0.08 \pm 0.08 \text{ (stat)} \pm 0.01 \text{ (syst)}$

07.07.2012

$$M_{R}^{KK} = 0.04 \pm 0.17 \text{ (stat)} \pm 0.02 \text{ (syst)}$$

$$M_{R}^{KK} = 1.42^{+0.41}_{-0.35} \text{ (stat)} \pm 0.07 \text{ (syst)}$$

$$M_{R}^{KK} = 0.04 \pm 0.17 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

$$M_{R}^{KK} = 0.04 \pm 0.17 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

$$M_{R}^{KK} = 0.04 \pm 0.17 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

$$M_{R}^{KK} = 0.04 \pm 0.17 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

$$M_{R}^{KK} = 0.04 \pm 0.17 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

$$M_{R}^{KK} = 0.04 \pm 0.17 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

$$M_{R}^{KK} = 0.04 \pm 0.17 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

$$M_{R}^{KK} = 0.04 \pm 0.17 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

$$M_{R}^{KK} = 0.04 \pm 0.17 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

$$M_{R}^{KK} = 0.04 \pm 0.17 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

$$M_{R}^{KK} = 0.04 \pm 0.07 \text{ (syst)}$$

07.07.2012

Alexandra MARTIN SANCHEZ (OF BEHAILOT LIE LICE CONSIDURATION) - LAL, OTSAY, FINCE

 $B_{(s)}^{0} \rightarrow \overline{D}^{0} K^{+} K^{-}$

LHCb-PAPER-2012-018

To be submitted to PRL

07.07.2012

$B_{(s)}^{0} \rightarrow \overline{D}^{0} K^{+} K^{-}$ analysis

10

- $\Box \quad B_{s}^{0} \rightarrow \overline{D}^{0} \text{ K}^{+} \text{ K}^{-} \text{ can improve sensitivity to } \gamma \text{ by a Dalitz plot analysis.}$
- $\square \quad \mathsf{B}_{(s)}^{\quad 0} \to \overline{\mathsf{D}}^0 \mathsf{K}^+ \mathsf{K}^- \text{ have not been observed previously.}$
 - □ *BR* measurement normalised to $B^0 \rightarrow \overline{D}^0 \pi^+ \pi^-$.
- Analysis based on 575 pb⁻¹ of 2011 LHCb data.
- Selection optimised with neural network on weighted distributions of several discriminating variables.
- D*- contributions vetoed, other backgrounds modeled in the final fit.
- Charmless peaking contribution substracted from the fitted yields.
- Efficiency computed as a function of the position in the \overline{D}^0 K⁺ K⁻ Dalitz plot.
- Dominant systematic uncertainty comes from the fit model.

07.07.2012

07.07.2012

Contributions from:

 $m^{2}(\overline{D}^{0}\pi^{+}) (GeV/c^{2})^{2}$

ρ(770)⁰

- f₂(1270)
- D₂*(2460)⁻

- Contributions from:
 - D₂^{*}(2573)⁻
 - Excess at low K⁺ K⁻ invariant mass.

D^{*}(2460)⁻

Alexandra MARTÍN SÁNCHEZ (on behalf of the LHCb collaboration) - LAL, Orsay, France

invariant mass.

$$\frac{\rho(770)^{\circ}}{f_{2}(1270)}$$

$$D_{2}^{*}(2460)^{-1}$$

- D_{s2}*(2573)⁻
- Excess at low K⁺ K⁻ invariant mass.

LHCb-CONF-2012-009

07.07.2012

$\overline{B}_{s}^{0} \rightarrow D \overline{D}'$ analysis

18

- Laboratory for physics beyond the Standard Model.
- □ Sensitivity to the weak phase γ ($\overline{B}^0 \rightarrow D^+ D^-$, $\overline{B}_s^0 \rightarrow D_s^+ D_s^-$) (assuming U-spin symmetry, *c.f.* R. Fleischer, Eur. Phys. J. C 51 (2007) 849-858).
- □ Measure sin(2 β) with penguin contributions ($\overline{B}^0 \rightarrow D^+ D^-$).
- □ Sensitivity to the weak phase ϕ_s and $\Delta \Gamma_s / \Gamma_s$ ($\overline{B}_s^0 \rightarrow D_s^+ D_s^-$).
- Based on 2011 LHCb data sample: 1.0 fb⁻¹.

■ BDT trained on background substracted $\overline{B}_{(s)}^{0} \rightarrow D_{(s)}^{+} \pi^{-}$ and $B^{-} \rightarrow D^{0} \pi^{-}$ data samples (signal) and D mass sidebands (background).

- □ Kinematics, PID.
- Additional requirements on vertex quality, flight distance.
- Dominant systematic comes from the knowledge of f_s/f_d (Phys. Rev. D 85, 032008 (2012)).

 $\frac{\mathcal{B}(\overline{B}{}^0_s \to D^+ D^-)}{\mathcal{B}(\overline{B}{}^0 \to D^+ D^-)}$

 $\frac{\mathcal{B}(\overline{B}^0_s \to D^+_s D^-_s)}{\mathcal{B}(\overline{B}^0 \to D^+ D^-_s)}$

 $\mathcal{B}(B^0_s \to D^+_s D^-)$ $\overline{\mathcal{B}(B^0 \to D^+_{\circ} D^-)}$

 $\mathcal{B}(\overline{B}^0_s \to D^0 D^0)$ $\overline{\mathcal{B}(B^- \to D^0 D^-_{a})}$

LHCb-CONF-2012-009

- LHCb experiment is in very good shape.
 - New results with the 1 fb⁻¹ collected in 2011.
 - CP asymetries in $B^0 \rightarrow D K^{*0}$.
 - LHCb-CONF-2012-024
 - $B_{(s)}^{0} \rightarrow \overline{D}^{0} K^{+} K^{-}$ first observation.
 - LHCb-PAPER-2012-018
 - $\overline{B}_{(s)}^{0} \rightarrow D \overline{D}'$ first observation and most precise measurements of *BR*.
 - LHCb-CONF-2012-009
 - Many other results:
 - $\Lambda_b^0 \rightarrow D^0 p K^-$ (LHCb-CONF-2011-036)
 - f_s/f_d with B⁰ → D⁻K⁺ (Phys. Rev. Lett. 107 (2011) 211801)
- LHCb taking data in 2012:
 - \bigcirc 0.6 fb⁻¹ recorded up to now, 1.5 fb⁻¹ expected at the end of the year.
 - More new results and updates to come!

07.07.2012

LHCb-CONF-2011-036

Alexandra MARTÍN SÁNCHEZ (on behalf of the LHCb collaboration) – LAL, Orsay, France

07.07.2012

