

D^0 - D^0 mixing results from Belle

Tao Peng University of Science & Technology of China

Outline:

- Introduction
 - D⁰ Mixing formalism
 - Experimental method
- Lifetime difference measurement in $D^0 \to K^+ K^-, \, \pi^+ \pi^-$
- Time-dependent Dalitz analysis of $D^0 \to K_S \pi^+ \pi^{-}$
- Summary

Introduction: Mixing formalism

$$i\frac{\partial}{\partial t}\left(\frac{D^0(t)}{D^0(t)}\right) = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right)\left(\frac{D^0(t)}{D^0(t)}\right)$$

• Mass eigenstate ≠ Flavor eigenstate

 $|D_{1,2}\rangle = p|D|^0\rangle \pm q|\overline{D}^0\rangle, \qquad p^2 + q^2 = 1.$

- Time dependent decay rate of $\mathbf{D}^{0} \to \mathbf{f}$: $(|\mathbf{x}|, |\mathbf{y}| <<1)$ $\frac{dN_{D^{0} \to f}}{dt} \propto |\langle f|\mathcal{H}|D^{0}(t)\rangle|^{2} = e^{-\Gamma t} |\langle f|\mathcal{H}|D^{0}\rangle + \frac{q}{p} (\frac{y+ix}{2}\Gamma t)\langle f|\mathcal{H}|\overline{D}^{0}\rangle|^{2}$
- Exponential decay modulates with mixing parameters x,y

$$x = \frac{m_1 - m_2}{\overline{\Gamma}}$$
, $y = \frac{\Gamma_1 - \Gamma_2}{2\overline{\Gamma}}$, $\overline{\Gamma} = \frac{\Gamma_1 + \Gamma_2}{2}$

 $M_{1,2}$ and Γ_{12} are the masses and widths of mass eigenstates, respectively. > x,y can be obtained from time-dependent decay rates studies

 Different final states sensitive to different combinations of x and y.

Experimental method

- Use D^0 from $D^{*+} \rightarrow D^0 \pi^+_s$
 - Tagging **D**⁰ flavor from π_s charge
 - Background suppression
- **D**⁰ proper decay time measurement

$$t = \frac{I_{dec}}{C\beta\gamma}, \quad \beta\gamma = \frac{P_{D^0}}{M_{D^0}}$$

- Reject D^{*+} from B decays: $p_{oxt}^{CM} \ge 2.5(3.1)$ GeV for Y(4S) and Y(5S) data
- Observables

M: invariant mass of **D**⁰ daughters

 $Q = M_{D^{*}+} - M - m_{\pi^{+}s}$

• 3-layer SVD (SVD1) and 4-layer SVD (SVD2)

Decays to CP eigenstates $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$

- Measurement of lifetime difference btw. $D^0 \to K^- \pi^+$ and $D^0 \to K^+ K^-, \, \pi^+ \pi^-$
- Time distribution are exponential(CP conserved)

Mixing parameters

$$y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} - 1$$

> If CP conserved: $y_{CP} = y$

• If CP violated \rightarrow difference in lifetime of D⁰/ $\overline{D^0} \rightarrow K^+K^-$, $\pi^+\pi^-$

 $\succ \text{ Lifetime asymmetry:} \qquad A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^- K^+) - \tau(D^0 \to K^+ K^-)}{\tau(\overline{D}^0 \to K^- K^+) + \tau(D^0 \to K^+ K^-)}$

Relation with mixing and CP violating parameters

$$y_{CP} = y \cos \phi - \frac{1}{2} A_M x \sin \phi$$
$$A_{\Gamma} = \frac{1}{2} A_M y \cos \phi - x \sin \phi$$

$$\phi = \arg\left(\frac{q}{p}\right)$$

$D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$ (updated with 976 fb-1)

• Signal yield(purities)

	КК	Кπ	ππ
Yield	242k	2.61M	114k
Purity	98.0%	99.7%	92.9%

- Background estimated from sidebands
- Fitting Proper decay time distribution

$$f(t) = \frac{N}{\tau} \int e^{-t'/\tau(ycp,A_{\Gamma})} R(t-t') + B(t)$$

- Resolution function for each bin of timing resolution (σt)
- PDF parameters determined in bins of *D*^{*+}
 polar angle in CMS (cos θ^{*})
 - mean proper time of $D^0 \to K^- \pi^+$ as a function of $\cos \theta^*$

$D^{0} \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}$ (updated with 976 fb-1)

Results (preliminary)

- y_{CP} is at 4.5 σ from zero when both errors are combined and at 5.1 σ if only statistical error is considered.
- A_{Γ} is consistent with zero.

D⁰ self-conjugated decays

For *D*^o 3 body self-conjugated decays, Dalitz analysis can be performed:

e.g. in $D^{0} \rightarrow K_{S}\pi^{+}\pi^{-}$, decay amplitude : $\mathcal{A}(m_{-}^{2}, m_{+}^{2})$

where $m_{-}^2 \equiv m_{K_S^0 \pi^-}, m_{+}^2 \equiv m_{K_S^0 \pi^+}$

- In CP conservation assumption, $\mathcal{A} = \overline{\mathcal{A}}$ and q/p = 1
- Decay rate as function of time: $(A_{1,2} = \frac{1}{2}(A \pm \overline{A}))$

 $\mathcal{M}(m_{-}^{2}, m_{+}^{2}, t) = \left\{ |A_{1}|^{2} e^{-yt} + |A_{2}|^{2} e^{yt} + 2\mathcal{R}[A_{1}A_{2}^{*}]\cos(xt) + 2\mathcal{I}[A_{1}A_{2}^{*}]\sin(xt) \right\} e^{-t}$

Simultaneous determination of x and y!

Event Reconstruction: $D^{*+} \rightarrow D^{0} \pi^{+}{}_{s'} D^{0} \rightarrow K_{s} \pi^{+} \pi^{-}$

- K_s selection ($\pi^+\pi^-$ final state):
 - Common vertex separated from the interaction region.
 - ► |M_{π'π}-m_{κ_s}| <10 MeV/c²
- For each $\boldsymbol{\pi}$ from \boldsymbol{D}^{o} : at least 4 hits on SVD.
 - To improve decay vertex resolution
- Decay vertex :reconstructed with charged π tracks **only.**

Selection criteria:

- $\Sigma \chi^2 < 100$ (vertex fit constraint)
- σt<1000 fs

➢ half of D⁰ life time on average

Signal and backgrounds

•Signal yield and purity:

Υ(4S), Υ(5S) full dataset, 920 fb⁻¹

	Yield	Putiry
Signal	1.23M	95.6%

Compared with belle's 2007 analysis:

	Belle (2007)	New	Ratio
Luminosity(<i>fb</i> -1)	540	920	1.7
Signal yield	534K	1231K	2.3

improve efficiency from new reprocess with new tracking.

Unbinned time-dependent Dalitz fit

•The logarithm of the likelihood function:

$$2\ln\mathcal{L} = 2\sum_{i=1}^{n}\ln\left[f_{\rm sig}^{i}p_{\rm sig}(m_{-,i}^{2}, m_{+,i}^{2}) + f_{\rm rnd}^{i}p_{\rm rnd}(m_{-,i}^{2}, m_{+,i}^{2}) + f_{\rm cmb}^{i}p_{\rm cmb}(m_{-,i}^{2}, m_{+,i}^{2})\right]$$

•The normalized signal PDF :

$$p_{\rm sig}(m_{-,i}^2, m_{+,i}^2, t_i) = \frac{\int_0^{+\infty} dt' \ R_{\rm sig}(t_i - t') |\mathcal{M}(m_{-,i}^2, m_{+,i}^2, t')|^2 \epsilon(m_{-,i}^2, m_{+,i}^2)}{\int_0^{+\infty} dt \int_D dm_-^2 dm_+^2 \ |\mathcal{M}(m_-^2, m_+^2, t)|^2 \epsilon(m_-^2, m_+^2)}$$

•Event-by-event fraction f_x^i determined by 2D M-Q fit

•DP Efficiency function $\epsilon(m_-^2, m_+^2)$ estimated from MC, parameterized by 3rd order polynomial.

•Background estimated from sideband.

•Convolved by resolution function

Dalitz model:

$$\mathcal{A}(m_{-}^2, m_{+}^2) = B_{r \neq \text{ S-wave}} + K_{\pi\pi \text{ S-wave}} + L_{K\pi \text{ S-wave}}.$$

• **P,D wave :** Breit Wigner model(12 resonances)

$$B_{r \neq \text{ S-wave}} = \sum_{r \neq \text{ S-wave}} a_r e^{i\phi_r} \mathcal{A}_r(m_-^2, m_+^2)$$

• $\pi^+\pi^- \text{S}$ wave: K-matrix model

$$F_1(s) = \sum_{i} \left[I - iK(s)\rho(s) \right]_{1i}^{-1} P_j(s) \; .$$

• K π S wave: LASS model

$$T = \sin \delta_B e^{\delta_B} + \sin \delta_R e^{\delta_R} e^{2i\delta_B}$$
$$\tan \delta_R = \frac{m_R \Gamma(s)}{m_R^2 - m_{K\pi}^2}$$
$$\cot \delta_B = \frac{1}{ap} + \frac{rp}{2}$$

- DP projections of $D^0 \rightarrow K_s \pi^+ \pi^-$ t-integrated Dalitz fit.
- Several DP models tested, the best description shown.

χ²/ndf= 1.246 for (3653-49) ndof

• The MC tests of t-dependent Dalitz fit

Pure signal MC tests

Background included MC tests

Background included fit results:

Input x,y(%)	Mean of outputs(%)		
(0,0)	$(0.023\pm0.078,\ 0.\ 049\pm0.\ 063)$		
(1,1)	(1.014 \pm 0.080, 0.925 \pm 0.068)		

x,y outputs consistent with true value.

Results (preliminary):

• Result for the mixing parameters:

No CPV

	Fit result	95% C.L interval (stat. only)
X(%)	0.56 ± 0.19	(0.09,1.03)
Y(%)	0.30 ± 0.15	(-0.08,0.68)

χ2=97./60bins

• *D*⁰ lifetime

ightarrow au=410.3 ± 0.4 fs

➢ PDG Mean life $\tau = (410.1 \pm 1.5) × 10^{-15}$ s

Systematics

Experimental Systematics

Source	$(\Delta x)(\times 10^{-4})$	$(\Delta y)(\times 10^{-4})$
Time resolution of signal	-1.39	-0.92
CMB t PDF(diff. sideband)	+1.74	+1.65
Error on CMB t parameters	± 0.77	± 1.57
BG Dalitz dep t	-4.76	-3.55
f_w float	-0.67	-0.45
Efficiency	-1.13	-2.09
Best Candidate selection	+1.05	+1.87
$K^*(892)$ DCS/CF reduced by 5%	-7.28	+2.29
$K_2^*(1430)$ DCS/CF reduced by 5%	+1.71	-0.67
Rnd N	± 0.27	± 0.13
CMB N	± 0.13	± 0.24
Total	$^{+2.78}_{-8.94}$	$^{+3.74}_{-4.58}$

Model Systematics

Fit model	$(\Delta x)(\times 10^{-4})$	$(\Delta y)(\times 10^{-4})$
$F_r = F_D = 1$	+4.05	+2.35
$\Gamma(q^2) = \text{constant}$	+3.33	-1.61
No $K^*(1680)^+$	-1.78	-3.02
No $K^*(1410) \pm$	-1.16	-3.62
No $\rho(1450)$	+2.13	+0.30
K-matrix	-2.16	+1.79
Angular dependence	-8.46.	-3.86
M & Γ error	± 1.40	± 1.21
Total	$+5.83 \\ -9.09$	$+3.21 \\ -6.42$

Consistent with MC estimations.

Result (preliminary):

 $x = (0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09})\%, y = (0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06})\%$

Result compared with previous analysis:

• Assuming CP conservation,

	x(%)	y(%)	
Belle 2007@540 fb ⁻¹	$0.80 \pm 0.29^{+0.09+0.10}_{-0.07-0.14}$	$0.33 \pm 0.24^{+0.08+0.06}_{-0.12-0.08}$	<u>PRL. 99, 131803 (2007)</u>
Babar 2010	$0.16 \pm 0.23 \pm 0.12 \pm 0.08$	$0.57 \pm 0.20 \pm 0.13 \pm 0.07$	<u>PRL.105, 081803 (2010)</u>
	0.26±0.24	0.60 ± 0.21	$D^0 ightarrow K_{ m S} \pi^+ \pi$ (only)
New@920 fb ⁻¹	$0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09}$	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.06}$	

Most precise determination of x,y to date.

Summary

- *D*⁰ mixing measurements updated with full Belle data(~ 1 ab⁻)
 - **D**⁰ → **K**+**K**⁻, π⁺π⁻ lifetime difference measurement $y_{CP} = (+1.11 \pm 0.22 \pm 0.11)\%$ 4.5 σ from zero $A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%$ No indirect CPV - **D**⁰ → **K**_Sπ⁺π⁻ time-dependent DP analysis $x = (0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09})\%, y = (0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06})\%$

most precise measurements of x and y to date.

Backups

Results (preliminary):

Contours for 1 σ and 95% C.L.(statistical only)

	Fit result	95% C.L interval (stat. only)
X(%)	0.56 ± 0.19	(0.09,1.03)
Y(%)	0.30 ± 0.15	(-0.08,0.68)

Consistent with previous measurement.

$D^0 \rightarrow K_S \pi^+ \pi^-$ DP model optimization

	P,D-wave	$\pi\pi S$ –wave	$K\pi S$ -wave	NR	-2∆lnζ	χ2
Belle(2007)	BW(12Res.)	BW	BW	$a_{\rm NR} e^{i\phi_{\rm NR}}$	0(default)	1.758
Fit 2	BW(12)	K-matrix(I)	BW	0	620	1.776
Fit 3	BW(12)	K-matrix(II)	BW	0	261	
Fit 4	BW(12)	BW	LASS	0	-1707	
Fit 5	BW(12)	BW	LASS	$a_{\rm NR} e^{i\phi_{\rm NR}}$	-2021	1.252
Babar2010	BW(8)	K-matrix(II)	LASS	0	-1468	
Fit 7	BW(12)	K-matrix(II)	LASS	0	-1886	1.246

For the $\pi\pi$ -S wave, BW and K-matrix model tested For the K π -S wave, BW and LASS model tested

Mixing and CPV in $D^0 \rightarrow K_S \pi^+\pi^-, D^0 \rightarrow K_S K^+K^-$

BaBar@469 fb⁻¹ [PRL105,081803] $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ and $D^0 \rightarrow K_S^0 K^+ K^-$

68%, 95% and 99.9% confidence level contours

Most accurate determinations of x and y!

1.9 standard deviation from no-mixing hypothesis

Belle@540 fb⁻¹ [PRL99,131803] $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

95% confidence level contours

Consistent with no CPV!

2.2 standard deviation from no-mixing hypothesis