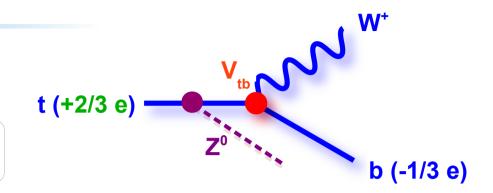


Other top quark properties at CMS

based on results from CMS Physics Analysis Summaries: TOP-11-029, TOP-11-031, TOP-12-014

Yvonne Küssel for the CMS Collaboration



Content

First measurement of *ttV*:

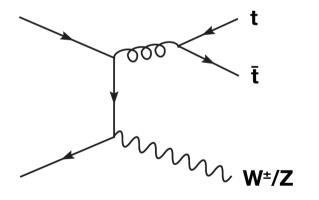
$$\sigma(t\,\bar{t}\,V) = \sigma(t\,\bar{t}\,Z) + \sigma(t\,\bar{t}\,W)$$

Measurement of R

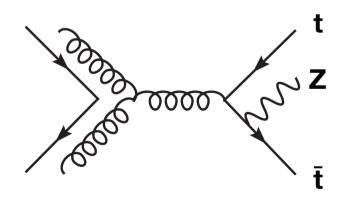
$$R = \frac{B(t \to Wb)}{B(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} \approx 99.8 \text{ (standard model)}$$

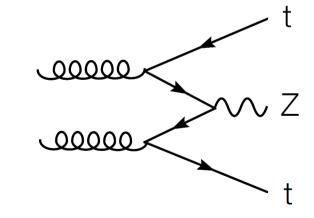
Constraints on the top quark electric charge:

$$A = \frac{N_{+2/3e} - N_{-4/3e}}{N_{+2/3e} + N_{-4/3e}} = 1 \text{ (standard model)}$$


First Measurement of Vector Boson Production Associated with tt

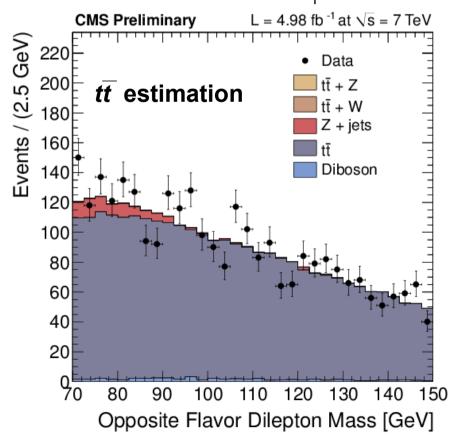
• $\mathcal{L} = 5 \text{ fb}^{-1} \text{ at } \sqrt{s} = 7 \text{ TeV}$

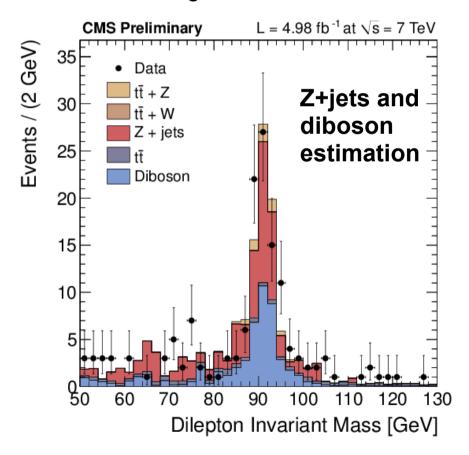

Trilepton channel: $\sigma(t\bar{t}Z \rightarrow l + \text{jets} + (Z \rightarrow l l))$


Same-sign dilepton channel: $\sigma(t\bar{t}V \to l + \text{jets} + (W \to l \nu) \text{ or } (Z \to l l))$

with
$$l=e$$
 or μ

Yvonne Küssel

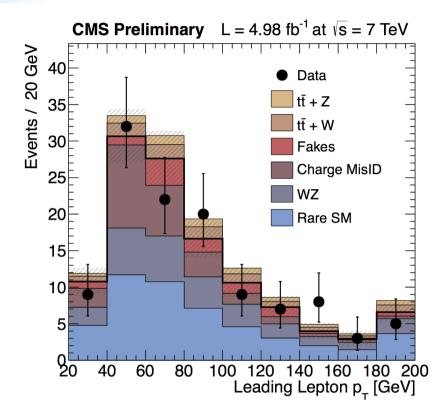



Trilepton Channel: $\sigma(t\overline{t}Z)$

Selection:

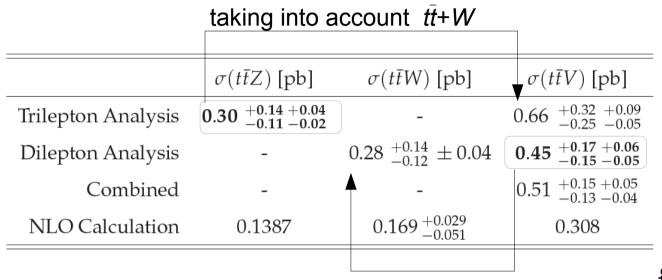
- → 3 leptons: 2 opposite-charge and same-flavor leptons (Z^{cand})
- \rightarrow 3 jets (2 *b* tagged), H_{τ} > 120 GeV

- Background estimation from data:
 - $\rightarrow t\bar{t}$: cross-flavor dilepton events
 - → Z+jets and diboson: trilepton, no b tag events

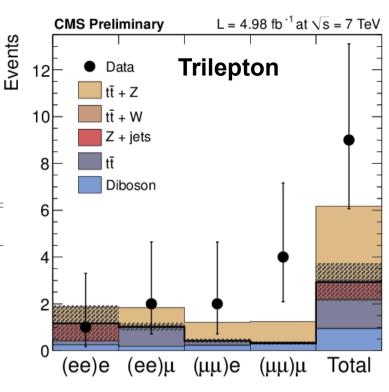

Same-Sign Dilepton Channel: $\sigma(t\overline{t}V)$

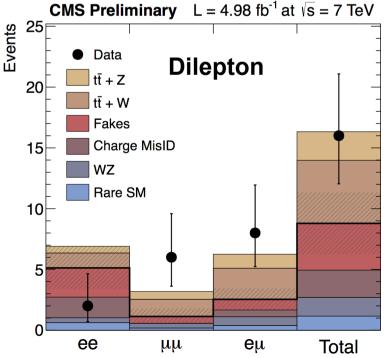
Selection:

- → 2 same-sign leptons
- \rightarrow 3 jets (1 *b* tagged), H_{τ} > 100 GeV
- → Veto trilepton selection



- → fake/non-prompt leptons: loose leptons passing tight criteria in QCD events
- → charge mis-identified electrons: fraction of same-signed electrons in Z decays
- → WZ cross section from CMS measurement
- → rare SM processes from MC prediction

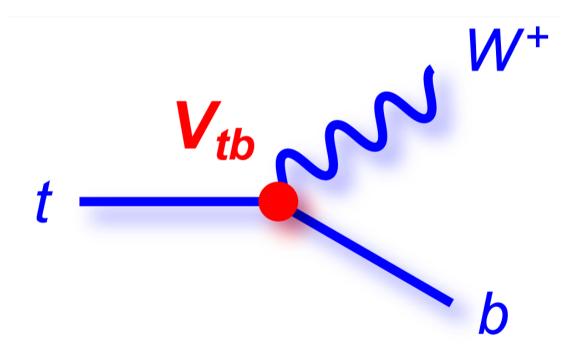

Combined Results



subtracting *tt+Z* yield

- Result combining all 7 channels:
 - → signal established at a significance of 4.67 σ

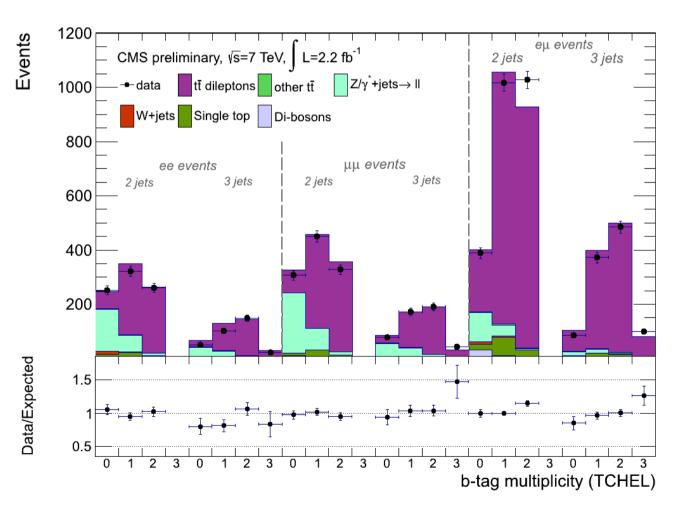
$$\sigma(t\,\bar{t}\,V) = 0.51^{+0.15}_{-0.13}(\text{stat.})^{+0.05}_{-0.04}(\text{syst.}) \text{ pb}$$

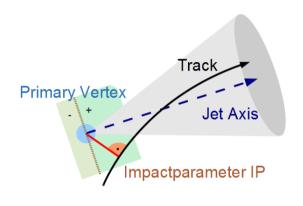


Measurement of R

- Dileptonic $t\bar{t}$ in \mathcal{L} = 2.2 fb⁻¹ at \sqrt{s} = 7 TeV
- Observable: *b*-tagged jet multiplicity

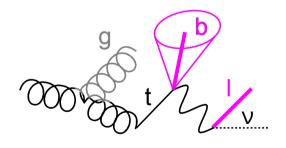
Yvonne Küssel

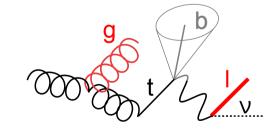

$$R = \frac{B(t \to Wb)}{B(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

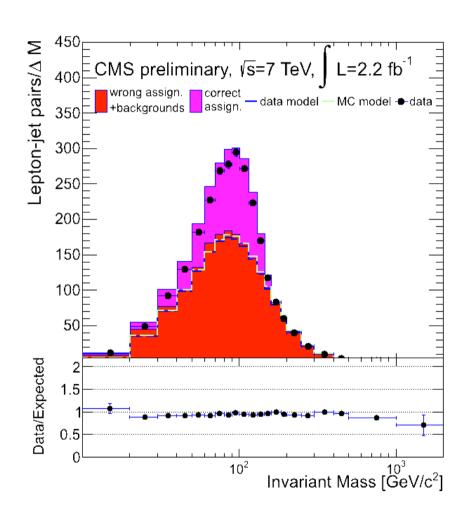


b-Tagging Multiplicity N_{btag}

- b jet := tagged with Track Counting High Efficiency Loose (TCHEL)
- Fairly good agreement with R = 1

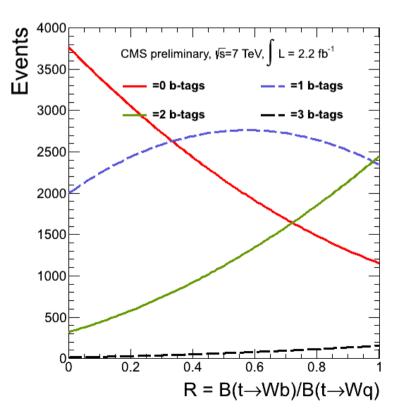


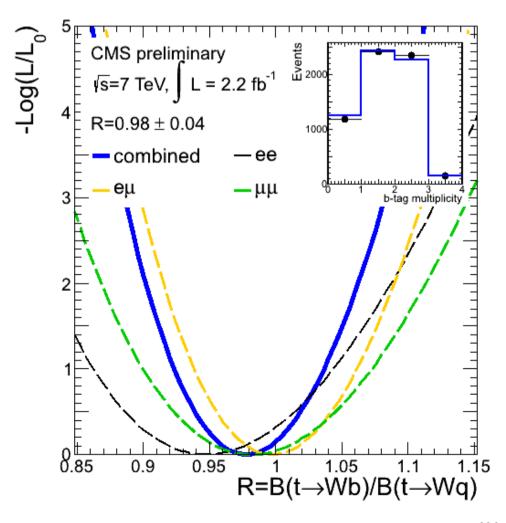

Jet-Assignment Estimate f_{correct}


Correctly assigned jets from tt:

$$m^{\text{inv}}(\text{lep., jet}) \le \sqrt{m_{\text{t}}^2 - m_{\text{W}}^2} = 156 \text{ GeV}$$

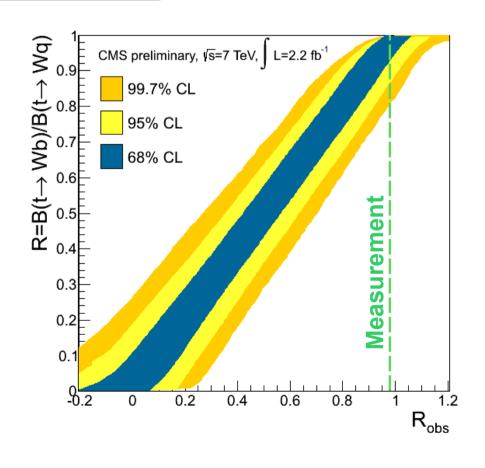
- Other jet assignments lead to large tail:
 - averaged template from data:
 - swapping jet from different event
 - ightharpoonup from randomly rotating $\ ec{p}_{
 m lep}$




$$f_{\text{correct}}^{\text{data}}(e\mu, 2 \text{ jets}) = 0.388 \pm 0.011 \text{ (stat. + sys.)}$$

Model and Fit of $N_{\text{btag}}(R)$

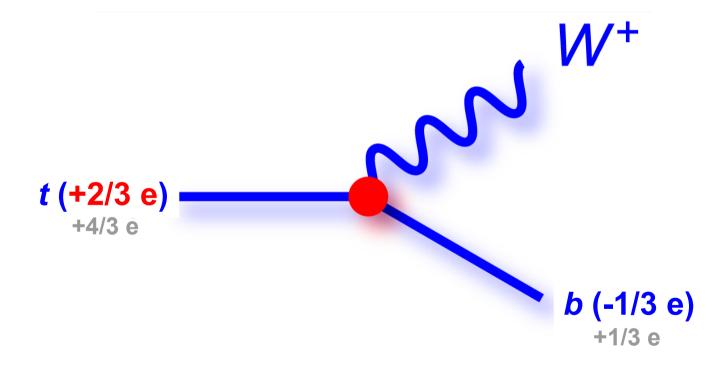
- Binned maximum likelihood fit with $N_{\text{btag}}(R)$ -model that depends on:
 - → b-tag and mistag efficiencies (from data)
 - fraction of top events (from data)
 - fraction of jets from top (from data)



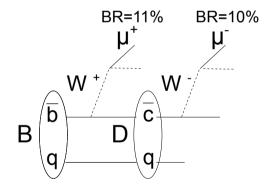
Results of R Measurement

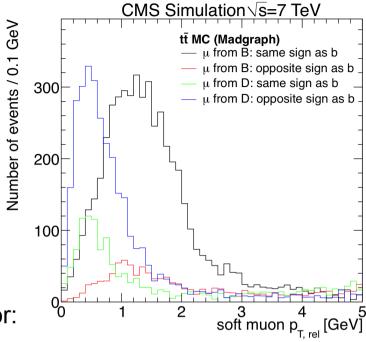
$$R = 0.98 \pm 0.04 \text{ (syst.+stat.)}$$

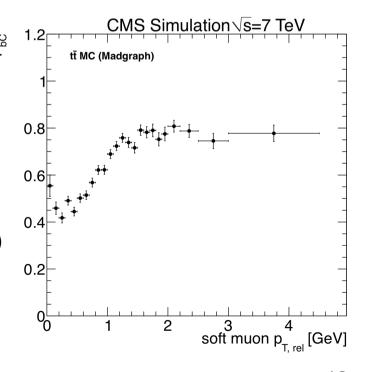
- Dominated by systematic uncertainties
- Feldman-Cousins frequentist approach: R > 0.85 at 95 % C.L.


Source	Uncertainty
ε_b	0.031
ε_q	0.011
Jet energy scale	0.002
Jet energy resolution	0.004
Pile-up	0.006
Q^2	0.023
Jet-parton matching scale	0.011
DY contamination	0.012
tt contribution	0.002
Total	0.044

Constraints on Top Quark Charge

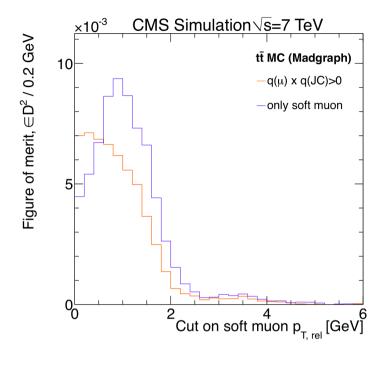

- Determine b charge and combine with W charge
- Discriminate +2/3 e against -4/3 e top charge scenario
- $t\bar{t} \rightarrow \mu$ + Jets in $\mathcal{L} = 5 \text{ fb}^{-1} \text{ at } \sqrt{s} = 7 \text{ TeV}$

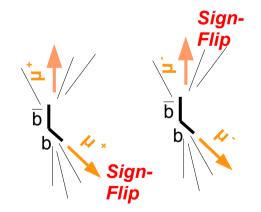



Charge Tagging of b Jet

- Charge of b quark:
 - diluted in hadronization process
 - transmitted to decay products
- Soft muon from b decay chosen as b-charge discriminator:

- \rightarrow increase performance with $p_{_{\text{T,rel}}}$ to jet axis (*B* mass)
- → global muon (p_{τ} > 4 GeV) inside *b* jet (ΔR < 0.4)

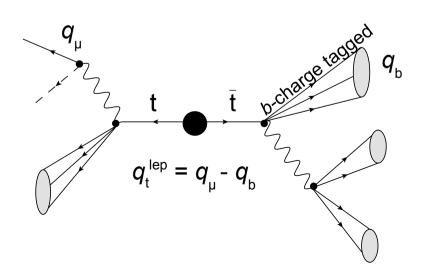


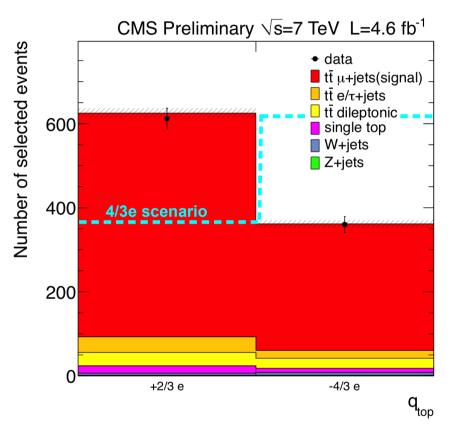

Charge Tagging of b Jet

- Optimization of soft muon charge discriminator:
 - \rightarrow maximal statistical significance: εD^2
 - \rightarrow muon $p_{\text{T rel}} > 0.85 \text{ GeV}$
- Probability of correct *b* charge:

$$P_{bC} = [74.5 \pm 0.8 \text{ (stat.)} \pm 2.6 \text{ (syst.)}] \%$$

- Estimate from data:
 - \rightarrow fraction of same sign muons in enriched $b\overline{b}$ sample
 - → data and simulation agrees within stat. uncertainty of 2.5%
 - → taken as syst. uncertainty for tt
- Additional systematic study: comparison of two different fragmentation models



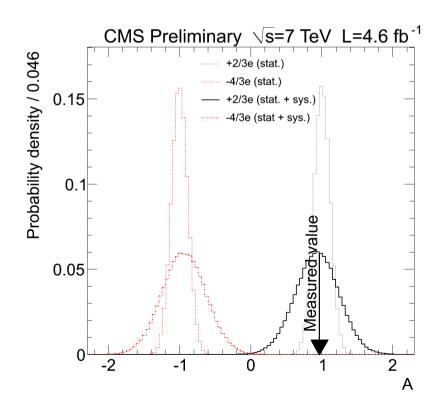

Event Categorization

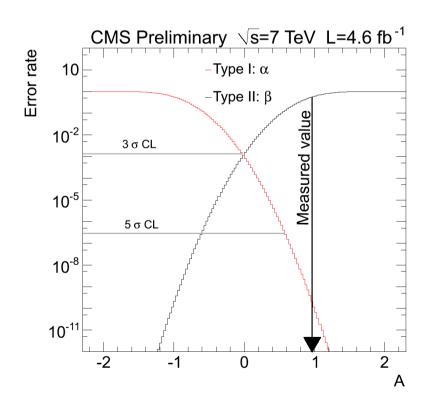
- Choose the combination with m_{inv} (one b jet, two non-b jets) closest to top mass
 - → assign to hadronic side
 - \rightarrow quality cut on $m_{inv}(\mu, b_{lep.}) < 150 \text{ GeV}$
- Correct assignment of charge tagged b jet:

$$P_{\text{pair}} = [80.2 \pm 0.8 \text{ (stat.)} \pm 3.8 \text{ (syst.)}] \%$$

- Combine b charge with high- p_{τ} muon charge
- Example:

Results of Top Charge Analysis


■ Test statistics: asymmetry between +2/3 e and -4/3 e categorized events


$$A = \frac{N_{+2/3e} - N_{-4/3e}}{N_{+2/3e} + N_{-4/3e}}$$

 \rightarrow probability density of A: pseudo experiments of $N_{+2/3e}$ and $N_{-4/3e}$

$$A_{\text{meas}} = 0.97 \pm 0.12 \text{ (stat.) } \pm 0.31 \text{(syst.)}$$

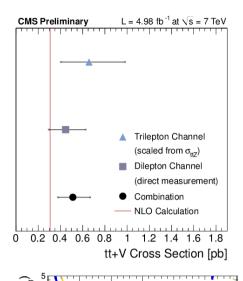
Dominant syst. uncertainty: limited statistics in systematic samples

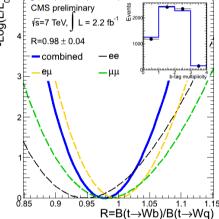
Summary

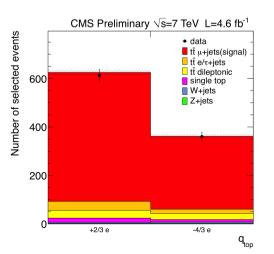
- First measurement of t̄tV:
 - → signal established at a significance of 4.67 σ

$$\sigma(t\,\bar{t}\,V) = 0.51^{+0.15}_{-0.13}(\text{stat.})^{+0.05}_{-0.04}(\text{syst.}) \text{ pb}$$

Measurement of R:

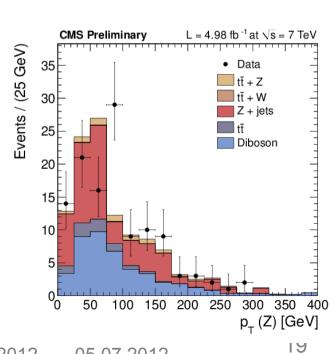

$$R = 0.98 \pm 0.04 \text{ (syst.+stat.)}$$


- \rightarrow A limit is set to R > 0.85 at 95 % C.L. .
- Constraints on the top quark electric charge:


$$A_{\text{meas}} = 0.97 \pm 0.12 \text{ (stat.)} \pm 0.31 \text{ (syst.)}$$

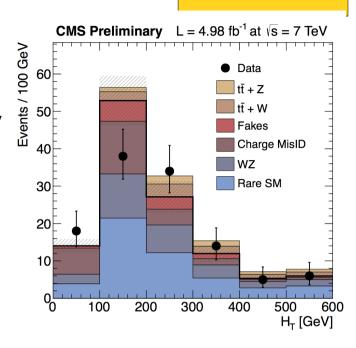
 \rightarrow 4/3 e charged top scenario (A = -1) excluded.

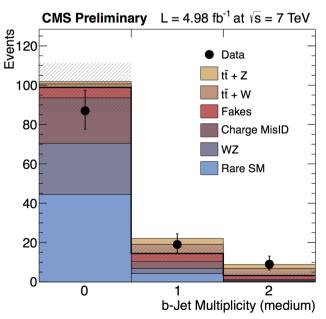
Top quark properties measured by CMS agree nicely with SM!



Selection of Trilepton Channel

- Full selection optimized for signal significance:
 - $\rightarrow Z_{\text{cand}}$: 2 opposite-charge, same-flavor leptons with $p_{_{\rm T}} > 20 \text{ GeV}$
 - → $p_{_{\rm T}}(Z_{_{\rm cand}}) > 35 \text{ GeV and } m_{_{\rm inv}}(Z_{_{\rm cand}}) \in [81,101] \text{ GeV}$
 - \rightarrow third lepton with $p_{_{\rm T}}$ > 10 GeV
 - \rightarrow at least 3 jets (p_{τ} > 20 GeV, $|\eta|$ < 2.4) (1 lose, 1 medium *b* tagged), H_{τ} > 120 GeV
- Loosened selection (background from data):
 - \rightarrow 2 opposite-charge leptons ($p_{\scriptscriptstyle T}$ > 20 GeV) with $m_{inv}(Z_{cand}) > 50$ GeV,no same-flavor: $t\bar{t}$ estimation
 - → at least 3 jets ($p_{_{T}}$ > 20 GeV, |η| < 2.4)
 - \rightarrow third lepton with $p_{\tau} > 10$ GeV (Z+jets and diboson)


Selection of Same-Sign Dilepton Channel



- Full selection optimized for signal significance:
 - \rightarrow 2 same-sign leptons with $p_{T1} > 55$ and $p_{T2} > 30$ GeV
 - \rightarrow at least 3 jets with $p_{T} > 20$ GeV (1 b tagged)
 - → $H_{_{\rm T}}$ > 100 GeV
- Loosened selection for validation:
 - \rightarrow 2 same-sign leptons with $p_{_{\rm T}}$ > 20 GeV
 - $\rightarrow m_{inv}(II) > 8 \text{ GeV}$

Yvonne Küssel

- \rightarrow 3 jets with $p_{\scriptscriptstyle T}$ > 20 GeV and $|\eta|$ < 2.4
- Rare SM: ZZ, V+gamma, same-sign WW production,
 triboson and multi-parton interaction leading to twice W+jets

Dileptonic tt Selection in $\mathcal{L} = 2.2 \text{ fb}^{-1}$ at \sqrt{s} = 7 TeV

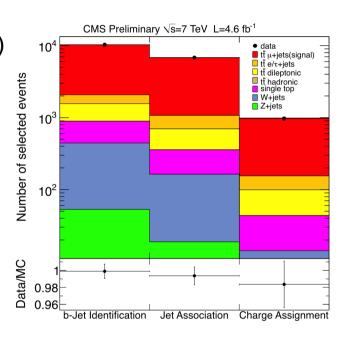
- Leptons (muons and *electrons*):
 - trigger: double lepton
 - \rightarrow at least 2 leptons with $p_{T} > 20$ GeV and isolation: particle flux_{$\Delta R < 0.3$} < 17% (20%)
 - \Rightarrow if more than 2 leptons: oppositely charged and highest Σp_{τ}
 - → M_" > 12 GeV
- Drell-Yan (DY) contribution:
 - \rightarrow same flavored leptons: $|M_7 M_{\parallel}| > 15$ GeV and $E_{\perp}^{\text{miss}} > 30$ GeV
 - \rightarrow estimated from data: angle between leptons; template from low E_{τ}^{miss} region
- Jets: E_{τ} > 30 GeV, well separated from leptons
- Fraction of tt events after selection: 0.767 ± 0.052 (stat.+syst.)

Factorization of $N_{\text{btaq}}(R)$

- Expected b-tagging multiplicity P_{k} to reconstruct and select 0, 1 or 2 jets from top decays
 - e.g. two jets from top decays:

$$P_{k} = R^{2} \varepsilon_{b}^{2} + 2R(1-R)\varepsilon_{b}\varepsilon_{q} + (1-R)^{2}\varepsilon_{q}^{2}$$

- P_k of the different event cases are combined using the probabilities α_i of having reconstructed *i* jets from top decays
- α_i can be expressed in terms of
 - fractions of top pair and single top events
 - → fraction of correctly assigned b jets f_{correct}
- Likelihood using this model and observed *b*-tag multiplicity:


$$\mathcal{L} = \prod_{\ell\ell} \prod_{jets \geq 2} \prod_{k=0}^{jets} \mathcal{P}_{oisson}[N_{ev}^{\ell\ell,jets}(k), \hat{N}_{ev}^{\ell\ell,jets}(k)] \prod_{x} \mathcal{G}_{aus}(x, \bar{x}, \sigma_{x})$$

Leptons:

- trigger: single isolated muon
- \rightarrow exactly 1 isolated muon p_{τ} > 26 GeV (trigger plateau)
- > veto on second loose lepton (electron E_{+} > 15 GeV, muon with p_{+} > 10 GeV)

Jets:

- \rightarrow at least 4 jets with $p_{\tau} > 30 \text{ GeV}$
- → at least 2 b jets with TCHE medium
- → b-tagging efficiencies and mistag rates corrected (event weight)
- Resulting background fraction (W, DY, QCD) ~ 2 %
- Top pairs and single top treated as signal

ICHEP 2012

Factorization of A

Probability to reconstruct a +2/3 e categorized event:

$$P = \frac{N_{2/3e}}{N_{2/3e} + N_{4/3e}}$$

 \rightarrow account for background events (f_{BG} : background fraction):

$$P = f_{BG} \cdot 0.5 + (1 - f_{BG}) \cdot P_{signal}$$

→ Account for misidentification of b jet:

$$\boldsymbol{P}_{\text{signal}} \!=\! (1 \!-\! \boldsymbol{P}_{\text{btag}}) \!\cdot\! \boldsymbol{P}_{\text{!btag, bC}} \!+\! \boldsymbol{P}_{\text{btag}} \!\cdot\! \boldsymbol{P}_{\text{pair,bC}}$$

Summary of performance numbers	
$P_{ m btag}$	$0.911 \pm 0.004 (stat.) \pm 0.029 (sys.)$
P_{bC}	$0.745 \pm 0.008 (stat.) \pm 0.026 (sys.)$
$P_{ m pair}$	$0.802 \pm 0.008 (stat.) \pm 0.038 (sys.)$
$P_{!btag,bC}$	$0.53 \pm 0.03 (\mathrm{stat.}) \pm 0.14 (\mathrm{sys.})$
$P_{ m signal}$	$0.64 \pm 0.01 (\mathrm{stat.})$
f_{BG}	$0.014 \pm 0.005 (stat.)$
P_{BG}	0.5 ± 0.1

→ Account for wrong b charge tagging and wrong association to lep. or had. side:

$$P_{\text{pair,bC}} = P_{\text{pair}} \cdot P_{\text{bC}} + (1 - P_{\text{pair}}) \cdot (1 - P_{\text{bC}})$$