

Constraining SUSY after two years of LHC data: a global view with Fittino

Xavier Prudent (IKTP, Dresden University) ICHEP 2012 Melbourne, 5th July 2012

Philip Bechtle (Bonn), Torsten Bringmann (Hamburg), Klaus Desch (Bonn), Herbi Dreiner (Bonn), Matthias Hamer (Göttingen), Carsten Hensel(Göttingen), Michael Krämer (Aachen), Nelly Nguyen (Hamburg), Werner Porod (Würzburg), Xavier Prudent (Dresden), Björn Sarrazin (DESY), Mathias Uhlenbrock (Bonn), Peter Wienemann (Bonn),

Searching for SUSY at the TeV scale ... and ?

2011: long LHC run, center-of-mass energy 7 TeV, luminosity ~5/fb.

Direct step into Terascale

No significant excess seen

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2011-19/

FITTINO

- C++ program for SUSY model testing and SUSY parameter analysis
- Currently supported SUSY models: CMSSM, GMSB, AMSB, MSSM24, NMSSM (E6SSM coming)
- Measurements from low/high energy experiments, LEP/SLC, Tevatron, cosmology, LHC and LC, (g-2)_μ, B, K...
- Parameter analysis using full correlation information:
 Auto-adaptive Markov Chain Monte Carlo (MCMC)
- Proof of principle with SPS1a': http://arxiv.org/abs/0907.2589v1

Study of a Constrained SUSY Model

 General SUSY model > 120 parameters Current data insufficient Restrict to constrained model: CMSSM

Fit of CMSSM with Low Energy Observables

Light sparticles < 1 TeV, but large uncertainties

Including the LHC Constraints

Testing the hypothesis of fixing A_0 , tan β ...

Sensitivity apparently negligible

Including the LHC Constraints

Goodness of fit decreases: colored/non-colored sectors coupled Masses and tan β shifted upwards: correlation with mass through (g-2)_µ $a_{\mu}^{SUSY} \sim sgn(\mu) tan \beta M_{SUSY}^{-2}$

Xavier Prudent – IKTP (TU Dresden) – ICHEP 2012

Including a Higgs Mass of 126 GeV

Including a Higgs Mass of 126 GeV

Calculating Higgs BR ratios with HDECAY in 2σ region

even for mass scale beyond the reach at Vs=7-8 TeV

Including a Higgs Mass of 126 GeV

Heavy Higgs hard to accommodate in CMSSM

Switch to non-minimal model ?

What about Non-Minimal Models ? <u>NUHM1</u>

NUHM1: Higgs GUT mass decouples from M₀

Large 2σ contour Lower mass, focus point excluded Better fit but still tension: strong correlation between BF(B_s \rightarrow µµ), (g-2)_µ, m(h⁰)₁₂

Xavier Prudent – IKTP (TU Dresden) – ICHEP 2012

Conclusion & Plans

- Current LHC exclusion leads to tension within CMSSM
 but not exclusion!
- Accommodate Higgs mass ≥ 125 GeV very hard in mSUGRA
 → Improved description of (g-2)_µ would greatly help (source of tension)
 - More results not presented here:
 - Higgs branching ratios

- impact of various values for $BF(B_s \rightarrow \mu\mu)$
- comparison of (in)direct detections
- impact of individual observables
- study of fine-tuning
- impact of uncertainties

JHEP 06, 098 (2012) - arXiv:1204.4199v1

Extension to more general SUSY models
 Improvement of code flexibility

Xavier Prudent – IKTP (TU Dresden) – ICHEP 2012

Each point, calculate $\chi 2$:

Require lightest neutralino to be LSP

Including "low energy" observables

SM parameters fixed (PDG value) Require lightest neutralino to be LSP

Comparison of the χ 2 profile pour the two sets of observables used (long and reduced)

Including the LHC constraints

Masses pushed upwards by LHC , partly cancelled by LEO Stronger bound for h⁰ and χ^0_1 Still room for masses < 500 GeV

Investigating uncertainties

Including direct – indirect detection

Xavier Prudent – IKTP (TU Dresden) – ICHEP 2012

One of the arguments for SUSY: fine tuning in SM

Is the best fit region less fine tuned ?

$$\begin{split} c_a &= \left| \frac{\partial {\ln} M_Z^2}{\partial {\ln} a} \right| \\ \Delta &= \max\left(c_a \right) \\ \mathbf{a} = \mathbf{m}_{\mathbf{0}}, \mathbf{m}_{\mathbf{12}}, \mathbf{A}_{\mathbf{0}} ... \end{split}$$

Calculated for each CMSSM point using SOFTSUSY

Best fit point less fine tuned **∆** = **39.7**

Xavier Prudent – IKTP (TU Dresden) – ICHEP 2012

Drawback of Δ **definition**:

- nur EW scale
- change relative to uncertainty ?
- change of other observables than m_z?

 χ 2-slices of ± 0.001 Calculate correlation between parameters:

$$\varrho_{ij} \equiv \left\langle \frac{(P_i - \langle P_i \rangle) \cdot (P_j - \langle P_j \rangle)}{\sigma_{P_i} \sigma_{P_j}} \right|$$
$$\varrho_{\max} = \max_{ij} \left(|\varrho_{ij}| \right)$$

$$P_i = m_0, m_{12}, A_0, \tan\beta$$

Express correlation & goodness of fit

- Take the largest ρ over the 6 values $\rightarrow \rho_{max}$
- For each point in (m₀, m₁₂) plane, take the smallest ρ_{max}

- A_0 , tan β profiled

Lower correlation for best fit region Lower correlation with LHC Less constrained fit →wider region accessible for A₀, tanβ →Flatter χ2 profile → smaller correlation

M₀ (GeV) Xavier Prudent – IKTP (TU Dresden) – ICHEP 2012 M₀ (GeV)

Different methods different results ! (+different observable, calculators,...)

arXiv:1109.3859

Including Direct – Indirect Detection of Dark Matter

- CoGeNT, DAMA/LIBRA "signals": not compatible with CMSSM
- Constraint expected for future direct detection experiment only
- Indirect detection constraints too weak (Fermi)

Predicted values of the observables at the best fit points

CMSSM, LHC $(2.9 \pm 0.8 \pm 0.2)$ E-9 1.4E-9 $(3.55 \pm 0.26 \pm 0.23)$ E-4 3.09E-4 (1.67 ± 0.39)E-4 0.92E-4 $BR(B_{c} \rightarrow \mu^{+}\mu^{-})$ <(4.50 ± 0.30)E-9 3.76E-9 $17.78 \pm 0.12 \pm 5.20$ 20.97 $\textbf{0.23113} \pm \textbf{0.00021}$ 0.23147 $80.385 \pm 0.015 \pm 0.010$ 80.368 116.8 $0.1123 \pm 0.0035 \pm 0.0112$ 0.1125 7.28E-10

LEO prefers low masses (for non-colored sector) LHC prefers high masses (for colored sector)

Tension building-in, but not enough to exclude CMSSM

Predicted values of the observables at the best fit points

$$a_{\mu}^{
m SUSY} \sim {
m sgn}(\mu)$$
 tan $eta \, M_{
m SUSY}^{-2}$

Impact of $B_s \rightarrow \mu \mu$

Small impact for SM value (~ LHC best fit value) $\mathcal{B}(B_s \to \mu\mu) = (3.2 \pm 0.3) \times 10^{-9}$ CDF "measurement" would disfavor the focus point

Impact of the relic density

Xavier Prudent – IKTP (TU Dresden) – ICHEP 2012

Predicted 2_o ranges of Higgs branching fractions

Looking beyond minimal model: NUHM1

Parameters:

$$M_0, M_H, M_{1/2}, A_0, \tan\beta, \operatorname{sgn}(\mu)$$

Difference with CMSSM:

 \rightarrow Universal Higgs mass differs from other scalars M_0

$$M_{H_u} = M_{H_d} = M_H$$

Observable	Experimental	Uncertainty		Exp. Reference
	Value	stat	syst	-
$\mathcal{B}(B \to s\gamma)/\mathcal{B}(B \to s\gamma)_{\rm SM}$	1.117	0.076	0.096	[47]
$\mathcal{B}(B_s \to \mu\mu)$	$< 4.7 \times 10^{-8}$			[47]
$\mathcal{B}(B_d \to \ell \ell)$	$< 2.3 \times 10^{-8}$			[47]
$\mathcal{B}(B \to \tau \nu) / \mathcal{B}(B \to \tau \nu)_{\rm SM}$	1.15	0.40		[48]
$\mathcal{B}(B_s \to X_s \ell \ell) / \mathcal{B}(B_s \to X_s \ell \ell)_{\rm SM}$	0.99	0.32		[47]
$\Delta m_{B_s} / \Delta m_{B_s}^{\rm SM}$	1.11	0.01	0.32	[49]
$\frac{\Delta m_{B_s} / \Delta m_{B_s}^{SM}}{\Delta m_{B_s} / \Delta m_{B_s}^{SM}}$	1.09	0.01	0.16	[47, 49]
$\Delta \epsilon_K / \Delta \epsilon_K^{\mathrm{SM}^{d}}$	0.92	0.14		[49]
$\mathcal{B}(K \to \mu \nu) / \mathcal{B}(K \to \mu \nu)_{\rm SM}$	1.008	0.014		[50]
$\mathcal{B}(K \to \pi \nu \bar{\nu}) / \mathcal{B}(K \to \pi \nu \bar{\nu})_{\rm SM}$	< 4.5			[51]
$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}}$	30.2×10^{-10}	8.8×10^{-10}	2.0×10^{-10}	[52, 53]
$\sin^2 \theta_{\text{eff}}$	0.2324	0.0012		[46]
Γ_Z	$2.4952 {\rm GeV}$	$0.0023 {\rm GeV}$	$0.001 \ {\rm GeV}$	[46]
R_l	20.767	0.025		[46]
R_b	0.21629	0.00066		[46]
R_c	0.1721	0.003		[46]
$A_{\rm fb}(b)$	0.0992	0.0016		[46]
$A_{\rm fb}(c)$	0.0707	0.0035		[46]
A_b	0.923	0.020		[46]
A_c	0.670	0.027		[46]
A_l	0.1513	0.0021		[46]
A_{τ}	0.1465	0.0032		[46]
$A_{\rm fb}(l)$	0.01714	0.00095		[46]
$\sigma_{\rm had}$	41.540 nb	0.037 nb		[46]
m_h	> 114.4 GeV		$3.0 \mathrm{GeV}$	[54, 55, 56]
$\Omega_{\rm CDM} h^2$	0.1099	0.0062	0.012	[57]
$1/\alpha_{em}$	127.925	0.016		[58]
G_F	$1.16637 \times 10^{-5} \mathrm{GeV}^{-2}$	$0.00001 \times 10^{-5} \text{GeV}^{-2}$		[58]
α_s	0.1176	0.0020		[58]
m_Z	$91.1875 {\rm GeV}$	$0.0021 {\rm GeV}$		[46]
m_W	$80.399 \mathrm{GeV}$	$0.025 {\rm GeV}$	$0.010~{\rm GeV}$	[58]
m_b	$4.20 {\rm GeV}$	$0.17 { m GeV}$		[58]
m_t	$172.4 {\rm GeV}$	$1.2 \mathrm{GeV}$		[59]
m_{τ}	$1.77684 {\rm GeV}$	$0.00017 \mathrm{GeV}$		[58]
m_c	$1.27 \mathrm{GeV}$	$0.11 {\rm GeV}$		[46]

Previous set of observables

Fig. 40: Ratio of the predicted value of $\Omega_{\text{pred}}h^2$ to the nominal value of $\Omega_{\text{SPS1a}}h^2$ in the SPS1a scenario for a variety of Toy Fits without using $\Omega_{\text{CDM}}h^2$ as an observable.

Xavier Prudent – IKTP (TU Dresden) – ICHEP 2012

Table 25: Results of the Markov Chain MC analysis) of the $MSSM18$:	model using low	v energy observa	ables, expected
LHC results for $\mathcal{L}^{\text{int}} = 300 \text{fb}^{-1}$ and ILC.				

Parameter	Nominal value	ILC Fit		$\sigma_{ m LE+LHC300}$	$\sigma_{\rm LE+LHC300+ILC}$
$M_{\tilde{\ell}_L}$ (GeV)	194.31	194.315	\pm	6.4	0.068
$M_{\tilde{\ell}_{R}}^{L}$ (GeV)	135.76	135.758	\pm	10.5	0.071
$M_{\tilde{\tau}_L}$ (GeV)	193.52	193.46	\pm	43.0	0.33
$M_{\tilde{\tau}_R}$ (GeV)	133.43	133.45	\pm	38.2	0.35
$M_{\tilde{q}_L}$ (GeV)	527.57	527.61	\pm	3.4	0.64
$M_{\tilde{q}_R}$ (GeV)	509.14	509.3	\pm	9.0	9.0
$M_{\tilde{b}_R}$ (GeV)	504.01	504.2	\pm	33.3	2.4
$M_{\tilde{t}_L}$ (GeV)	481.69	481.6	\pm	15.5	1.5
$M_{\tilde{t}_R}$ (GeV)	409.12	409.2	\pm	103.8	1.6
$ an \beta$	10	10.01	\pm	3.3	0.29
$\mu ~(\text{GeV})$	355.05	355.02	\pm	6.2	0.88
X_{τ} (GeV)	-3799.88	-3795.1	\pm	3053.5	46.6
$X_t \; (\text{GeV})$	-526.62	-526.8	\pm	299.2	4.7
X_b (GeV)	-4314.33	-4252.1	\pm	5393.6	728.7
$M_1 (\text{GeV})$	103.15	103.154	\pm	3.5	0.046
M_2 (GeV)	192.95	192.95	\pm	5.5	0.11
$M_3 (\text{GeV})$	568.87	568.66	\pm	6.9	1.65
$m_A \ ({\rm GeV})$	359.63	360.07	\pm	$^{+1181}_{-99.3}$	1.83

Table 24: Result of the fit of the mSUGRA model to the existing measurements and to the expected results from LHC with $\mathcal{L}^{\text{int}} = 300 \, \text{fb}^{-1}$ and ILC.

Parameter	Nominal value	Fit		Uncertainty
$\tan \beta$	10	9.999	±	0.050
$M_{1/2}$ (GeV)	250	249.999	\pm	0.076
M_0 (GeV)	100	100.003	\pm	0.064
A_0 (GeV)	-100	-100.0	\pm	2.4

Xavier Prudent – IKTP (TU Dresden) – ICHEP 2012