Forward physics results from CMS

Gilvan A. Alves - Lafex/CBPF for the CMS collaboration

The setting:CMS@LHC

- High energy and high luminosity
 - Allows high statistics precision measurements, and sensitivity to "rare" processes (hard diffraction, exclusive production)
 - But high luminosity comes with high "pileup" – average 2-4 extra interactions/crossing in 2010, 5-8 in 2011
 - Low pileup needed for some analysis

- Good detector coverage
 - Tracking to $|\eta| < 2.4$
 - Hadronic calorimeter (HF)
 to |η| < 5
 - Forward calorimeters
 (cover -6.6< η< -5.2
 (CASTOR) and |η| > 8.1
 (ZDC)

segments in z (no n segmentation)

Overview

- Cross section Measurement using HF
- Studying the Underlying Event with different strategies
 - Drell-Yan events
 - Using very forward hadronic activity
- lacktriangle Dijet production ratio at large Δy
- Many other interesting results not covered here
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ

Measurement of the inelastic cross-section using HF calorimeter

Event Selection

- Single sided event selection is used: either HF has at least one hit above 5 GeV total energy
- Counted number of events in the data (after subtracting background): N_{inel}

- $\xi = M_X^2$ /s where M_X is the invariant mass of the system
- In case of single diffractive events, ξ is the fractional momentum loss of the scattered proton
- Events with small ξ can escape detection

Inelastic cross section with $\xi > 5x10^{-6}$

- f_{ξ} : fraction of visible events that are low mass (contamination)
- $\boldsymbol{\varepsilon}_{\boldsymbol{\xi}}$: fraction of high mass events that are visible (efficiency)
- Systematic:
- -Noisy tower exclusion
- -Run-by-run luminosity
- variations
 -HF energy threshold
- -Model dependence
- measurement
- Average the σ values obtained under various (low) pileup conditions $\rightarrow \chi^2/\text{ndof} = 1.2$ with the 5 GeV selection

 $\sigma_{\rm inel}(\xi > 5 \times 10^{-6}) = 60.2 \pm 0.2 ({\rm stat.}) \pm 1.1 ({\rm syst.}) \pm 2.4 ({\rm lumi.}) \; {\rm mb}$

Results

- PYTHIA8+MBR and QGSJET reproduce globally the data.
- Other models under (over-) predict low (high-) mass diffraction

CMS PAS FWD-11-001

$$\sigma_{\text{inel}}(> 1 \text{track}) = [58.7 \pm 2.0(\text{syst}) \pm 2.4(\text{lum})] \text{ mb}$$

 $\sigma_{\rm inel}(\xi > 5 \times 10^{-6}) = 60.2 \pm 0.2 ({\rm stat.}) \pm 1.1 ({\rm syst.}) \pm 2.4 ({\rm lumi.}) \; {\rm mb}$

Comparison with other measurements

Study of the underlying event

CMS QCD 11-012

Measuring the UE

- Study the UE as a function of the hard scale of the event, and at different centre-of-mass energies
- CMS did several approaches:
 - at central rapidities
 - Hard scatter & UE in same η range
 - divide φ phase space to separate the UE from the hard scatter
 - look at particle densities, energies in the transverse region
 - As function of the hard scatter p_T scale
 - leading jets [DOI: 10.1007/JHEP 09(2011)109]; Drell-Yan

at forward rapidity

- UE observables separated with
- large Δη from hard scatter
- No division of φ phase space
- Possible to study UE φ structure

UE activity in Drell-Yan

CMS QCD 11-012

- Complementary approach to existing measurements
 - Drell-Yan: experimentally clean, theory well understood
 - absence of QCD FSR & low probability of brehmsstrahlung from muons

- Study the UE activity as function of
 - the di-muon p_T: minimize background, study dependence in narrow mass window; energy scale sufficiently large to saturate MPI → probes ISR spectrum
 - the di-muon mass: look at wide M_{μμ} range for di-muon p_T < 5 GeV/c → verify MPI saturation
- Drell-Yan event selection:
 - exactly 2 opposite charge isolated $p_T > 20 \text{ GeV/c}$, $|\eta| < 2.4 \text{ from vertex}$ well centered around the beam-spot
 - charged particles for UE: central high purity tracks from primary vertex $p_T > 0.5 \text{ GeV/c}$, $|\eta| < 2$, $\sigma(p_T)/p_T < 5\%$

Dependence of UE activity vs di-muon p_T for 81 GeV/c2 < $M_{\mu\mu}$ < 101 GeV/c2

At this energy scale → MPI saturated → p_T dependence sensitive to ISR

Towards & transverse region:

- \rightarrow slow growth in particle & energy density with increasing di-muon p_T
- →Madgraph with tune Z2 describes the data well →Powheg Z2 & Pythia8 4C fail to describe the data (but agree at low p_T)

Away region:
mostly sensitive to spectrum of hardest emission
→equally well described by all tunes &
generators

UE at Forward Rapidity

CMS PAS FWD 11-003

 Measure the Underlying Event (UE) activity by comparing energy density in CASTOR (-6.6 < η < -5.2) for minimum bias events w.r.t. events with a

hard scale

Minimum bias (inclusive events)

energy density not much affected by MPI

- Hard scale
 - energy flow strongly affected by MPI
 - use the central leading track-jet
 with p_T > 1 GeV/c and |η| < 2
- Use ratio of energy densities
 - independent of calibration
 - minimizes systematic uncertainties
- Study the ratio as function of Hard scale
- Study Energy Flow as function of \sqrt{s}

- Hard-to-inclusive ratio vs leading track-jet p_T at $\sqrt{s} = 0.9$, 2.76, 7 TeV
- At o.9 TeV: ratio below 1
 - production of central hard jets accompanied with higher UE activity depletes energy of the proton remnant which fragments in CASTOR
- At 7 TeV well known UE behaviour:
 fast increase at low p_T followed by a
 plateau above p_T=8 GeV/c
- ■At 2.76 TeV the increase of the ratio is much reduced

- Pythia tunes fitted to LHC (Z2*, 4C) & Herwig 2.5 describe data well
- Older tune Pythia6 D6T fails to describe the results Gilvan A. Alves

- Normalized energy density vs √s:
 - normalized to 2.76 TeV (minimize systematic uncertainties)
 - for both inclusive and hard scale events (leading track-jet, $p_T > 10 \text{ GeV/c}$, $|\eta| < 2$)

Energy density increases much faster in events with a hard scale

Inclusive events:

→None of the Pythia & Herwig models can describe the relative increase at 7 TeV

→QGSJET describes data, other tunes underestimate

Hard scale:

→Pythia6 D6T & QGSJETo1 close to the data, other tunes underestimate the increase

Increase of the UE activity with centre-of-mass energy very challenging

Ratio of inclusive/exclusive dijets

- Motivation: Pin down effects beyond collinear factorization, BFKL evolution, etc.
- Measurement of the ratios as a function of the separation $|\Delta y|$ for calorimeter jets with $p_T > 35 \text{ GeV and } |\eta| < 4.7$
- exclusive: only two selected jets allowed per event.
- inclusive: each pair of selected jets considered.
- Mueller-Navelet (MN): Subset of inclusive with most fwd and most bw jet
- Selection: single-jet trigger above 15 GeV for moderate Δη (33 nb⁻¹) dedicated fwd-bw jet-pair trigger for large $\Delta \eta$ (5 pb⁻¹).
- Bin-by-bin correction for detector effects from HERWIG++ (tune 23) and PYTHIA6 (Z2) (default PYTHIA, HERWIG for uncertainty).
- Small corrections, but largest uncertainty 1.3 - 5.6%.

Results

- σ_{incl} 1.0-1.4 times larger than σ_{excl} .
- Expected rise of R with Δy (phase space for hard parton radiation).
- Decrease at highest ∆y: kinematics.
- At largest $|\Delta y| R_{incl} \sim R_{MN}$ as expected
- PYTHIA6 (Z2) with and without MPI and PYTHIA8 (4C) agree well with data. Small MPI effect.
- HERWIG++ 2.51 (tune UE-7000-EE-3)
 too high at medium/large separation.
- CASCADE and HEJ+ARIADNE do not describe the data.

Conclusions

- Inelastic cross-section
 - New measurement based on single sided trigger
 - Compares well with ATLAS and σ_{inel} from pileup vertex counting
 - QGSJET and PYTHIA8-MBR reproduce globally the data. Other models under (over-) predict low (high-) mass diffraction
- Underlying Event
 - Models tuned to LHC data can describe many aspects
 - Evolution of central & forward energy densities as function of the hard scale
 - Notable discrepancies
 - UE activity in the towards & transverse regions in Drell-Yan at high p_T
 - relative increase of forward energy density in inclusive and hard scale events
- Ratio of inclusive to exclusive dijet as function of rapidity separation
 - Good description by PYTHIA6/8; HERWIG with difficulties
 - Small sensitivity to MPI simulation.
- CMS results provide new constraints for non-perturbative and semi-hard QCD dynamics on MCs

Extra

Cross section calculation

- f_{ξ} : fraction of visible events that are low mass (contamination)
- ε_{ξ} : fraction of high mass events that are visible (efficiency)

Luminosity and Pile-up

- The integrated luminosity (L) is based on the Van der Meer scans
- The uncertainty of the luminosity is 4%: dominates the systematic uncertainties of this analysis
- Number of collisions per bunch crossing follows Poisson
 Average λ (pile-up)

$$\begin{split} F_{\text{pileup}} &= \frac{\Sigma_{i=1}^{\infty} i P(i, \lambda)}{\Sigma_{i=1}^{\infty} (1 - (1 - \epsilon_{\text{inel}})^{i}) P(i, \lambda)} \cdot \epsilon_{\text{inel}} = \frac{\epsilon_{\text{inel}} \lambda}{\Sigma_{i=1}^{\infty} (1 - (1 - \epsilon_{\text{inel}})^{i}) P(i, \lambda)} = \\ &= 1 + \frac{1}{2} \lambda \epsilon_{\text{inel}} + \frac{1}{12} \lambda^{2} \epsilon_{\text{inel}}^{2} + \mathcal{O}(\lambda^{3}) \end{split}$$

 Correction factor – accounts for multiple collisions being counted as one.

Extrapolation to Inelastic pp -

Models

- PYTHIA 6 D6T
- PYTHIA 8

- PHOJET
- SYBILL 2.1

- EPOS 1.99
- QGSET-II 4
- Generator level

UE activity in Drell-Yan

CMS QCD 11-012

- Complementary approach to existing measurements
 - Drell-Yan: experimentally clean, theory well understood
 - absence of QCD FSR & low probability of brehmsstrahlung from muons
- Measure particle & energy densities in central region:
 - average number & p_T sum of the charged particles
 - central charged particles: $p_T > 0.5 \text{ GeV/c}$, $|\eta| < 2 \text{ (muons from DY excluded)}$

- Study the UE activity as function of
 - the di-muon p_T: minimize background, study dependence in narrow mass window; energy scale sufficiently large to saturate MPI → probes ISR spectrum
 - the di-muon mass: look at wide $M_{\mu\mu}$ range for di-muon $p_T < 5$ GeV/c \rightarrow verify MPI saturation

Gilvan A. Alves

- Drell-Yan event selection:
 - exactly 2 opposite charge isolated muons with p_T > 20 GeV/c, |η| < 2.4
 from vertex well centered around the beam-spot
 - charged particles for UE: central high purity tracks from primary vertex $p_T > 0.5 \text{ GeV/c}$, $|\eta| < 2$, $\sigma(p_T)/p_T < 5\%$
- Study energy scale dependence of MPI as function of M_{μμ}:
 - limit ISR: di-muon p_T < 5 GeV/c</p>

Look at towards & transverse region: $\Delta \phi < 120^{\circ}$

Pythia6 Z2 & Pythia8 4C describe the densities well

Powheg Z2 underestimates by 10-15%

• no dependence on $M_{\mu\mu} \rightarrow saturated MPI$

LHC as a small x machine

- LHC can access lowest x values
 - for central W/Z production at
 - **7 TeV:** $x \sim 0.01$
 - **14 TeV:** $x \sim 0.005$
 - at forward rapidities ($\eta \sim 5$):
 - **7 TeV** $x \sim 6 \cdot 10^{-5}$
 - 14 TeV $x \sim 3 \cdot 10^{-5}$
 - for central jets with p, > 20 Ge√s
 - **7 TeV**: $x \sim 0.006$
 - **14 TeV**: $x \sim 0.003$
 - at forward rapidities ($\eta \sim 5$):
 - **7 TeV:** $x \sim 4 \cdot 10^{-5}$
 - 14 TeV: $x \sim 2 \cdot 10^{-5}$

J. M. Campbell, J. W. Huston, and W. J. Stirling. Hard Interactions of Quarks and Gluons: A Primer for LHC Physics. Rept. Prog. Phys., 70:89, 2007.

LHC parton kinematics

HF structure and properties

