Heavy ion collider facility NICA at JINR (Dubna):

status and development.

Grigory Trubnikov on behalf of the team Joint Institute for Nuclear Research, Dubna

07 July 2012 Melbourne, ICHEP-2012

Main targets of the NICA accelerator facility:

- study of hot and dense baryonic matter

& nucleon spin structure

- development of accelerator facility

for HEP in JINR providing intensive beams of relativistic ions from **p** to Au energy range $\sqrt{S_{NN}} = 4..11$ GeV (Au⁷⁹⁺)

> and polarized **protons** and **deutrons** (energy range $\sqrt{S_{NN}} = 4..26$ GeV for p)

> > Vladimir Kekelidze (JINR) Physics @NICA 06.07.12

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012 http://nica.jinr.ru

2nd generation HI experiments

STAR/PHENIX @ BNL/RHIC. Originally designed for higher energies ($s_{NN} > 20$ GeV), low luminosity for LES program L<10²⁶ cm⁻²s⁻¹ for Au⁷⁹⁺

NA61 @ CERN/SPS. Fixed target, non-uniform acceptance, few energies (10,20,30,40,80,160A GeV), poor nomenclature of beam species

3nd generation HI experiments

CBM @ FAIR/SIS-100/300 Fixed target, E/A=10-40 GeV, high luminosity

MPD & SPD @ JINR/NICA. Collider, small enough energy steps in the range $s_{NN} = 4-11$ GeV, a variety of colliding systems, L~10²⁷ cm⁻²s⁻¹ for Au⁷⁹⁺

QCD phase diagram - Prospects for NICA

Energy Range of NICA unexplored region of the QCD phase diagram:

- Highest net baryon density
- Onset of deconfinement phase transition
- Strong discovery potential:
 a) Critical End Point (CEP)
 b) Chiral Symmetry Restoration
- Complementary to the RHIC/BES, FAIR, CERN & Nuclotron-M experimental programs

NICA facilities provide unique capabilities for studying a variety of phenomena in a large region of the phase diagram

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

Synchrophasotron (1957-2002) → Nuclotron (1993) – superconducting accelerator for ions and polarized particle – physics of ultrarelativistic heavy ions, high energy spin physics

Nuclotron provides now performance of experiments on accelerated proton and ion beams (up to Xe42+, A=124) with energies up to 6 AGeV (Z/A = 1/2)

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

	Nuclotron beam intensity (particle per cycle)				
Beam	Current status	lon source type	New ion source + booster		
р	3·10 ¹⁰	Duoplasmotron	5 ⋅10 ¹²		
d	5·10 ¹⁰	,,	5 ⋅10 ¹²		
⁴ He	8·10 ⁸	,,	1.10 ¹²		
d↑	2·10 ⁸	SPI	1.10 ¹⁰		
⁷ Li	8.10 ⁸	Laser	5 ⋅10 ¹¹		
^{11,10} B	1.10 ^{9,8}	,,			
¹² C	5·10 ⁹	,,	2 ⋅10 ¹¹		
²⁴ Mg	2·10 ⁷	,,			
¹⁴ N	1.10 ⁷	ESIS ("Krion-6T")	5 ⋅10 ¹⁰		
²⁴ Ar	1.10 ⁹	,,	2 ⋅10 ¹¹		
⁵⁶ Fe	2·10 ⁶	,,	5 ⋅10 ¹⁰		
⁸⁴ Kr	1.10 ⁴	,,	1.10 ⁹		
¹²⁴ Xe	1.10 ⁴	,,	1.10 ⁹		
¹⁹⁷ AU	-	,,	1.10 ⁹		

NICA

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

http://nica.jinr.ru

6

Complex NICA @ JINR (VBLEP)

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

Superconducting accelerator complex NICA (Nuclotron based Ion Collider fAcility)

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

NICA goals

1a) Heavy ion colliding beams 197Au79+ x 197Au79+ at $\sqrt{s_{NN}} = 4 \div 11 \text{ GeV} (1 \div 4.5 \text{ GeV/u} \text{ ion kinetic energy})$ at L_{average}= 1x10²⁷ cm⁻²·s⁻¹ (at $\sqrt{s_{NN}} = 9 \text{ GeV}$)

1b) Light-Heavy ion colliding beams of the same energy range and L

2) Polarized beams of protons and deuterons in collider mode: $p\uparrow p\uparrow \sqrt{s_{pp}} = 12 \div 27 \text{ GeV} (5 \div 12.6 \text{ GeV kinetic energy})$ $d\uparrow d\uparrow \sqrt{s_{NN}} = 4 \div 13.8 \text{ GeV} (2 \div 5.9 \text{ GeV/u ion kinetic energy})$ $L_{average} \ge 1x10^{30} \text{ cm}^{-2} \cdot \text{s}^{-1} (\text{at } \sqrt{s_{pp}} = 27 \text{ GeV})$

3) The beams of light ions and polarized protons and deuterons for fixed

target experiments:

Li \div Au = 1 \div 4.5 GeV /u ion kinetic energy p, p^ = 5 \div 12.6 GeV kinetic energy d, d^ = 2 \div 5.9 GeV/u ion kinetic energy

4) Applied research on ion beams at kinetic energy

from 0.5 GeV/u up to 12.6 GeV (p) and 4.5 GeV /u (Au)

NICA

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

Superconducting Booster synchrotron, E = 3..600 MeV/u, C=211 m

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

Unique low energy (1 - 4.5 GeV/u) collider with extremely high luminosity L=1e27

Proposed scheme of RF cycle in collider

Barrier RF system (1-st RF)

coasting beam

Stop at length of 1/3 of bucket

3-d RF system (h=h2x3)

bunch has final parameters

Facility structure and operation regimes

The problems and the solutions

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

Ring circumference, m	503,04			
Number of bunches	24			
Rms bunch length, m	0.6			
Beta-function in the IP, m	0.35			
Ring acceptance (FF lenses)	40 π·mm·mrad			
Long. acceptance, $\Delta p/p$		±0.010		
Gamma-transition, γ_{tr}	7.091			
lon energy, GeV/u	1.0	3.0	4.5	
lon number per bunch	2.75·10 ⁸	2.4·10 ⁹	2.5·10 ⁹	
Rms momentum spread, 10 ⁻³	0.62	1.25	1.65	
Rms beam emittance, h/v,	1.1/	1.1/	1.1/	
(unnormalized), π·mm·mrad	1.01	0.89	0.76	
Luminosity, cm ⁻² s ⁻¹	1.1e25	1e27	5e27	
Ę	SC dominated	IBS dominated (∆Q < 0.05)		

1000

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

Strategy of the cooling at experiment

IBS is calculated for equal rates in 3 degrees of freedom, $I_e = 0.5 A$

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

Unique SC Heavy Ion Source KRION with 3T and 6T SC solenoid Highly charge ion state for heavy ions with high intensity, f.e.: Kr 28+, Xe 44+, Au 52+ Measured critical current for **Excellent and modern SC technologies + unique accelerator physics** different prototypes of solenoids Permanent sextupole Dissociator & Sextupole magnets assembly & RF-cells Assembly of the charge-exchange plasma ionizer Sextupo magne Solenoid Extraction chamber Mass spectromet Mas spectrome Arc plasma source **Collaboration with** Leak detect ТИ-14 Spin precessor **INR RAS: high** intensity polarized particle source: up to Pump Turbo-V 3K-T 5L D2 & O2 2300 l/s H2 cylinders **10¹¹ particles/pulse** Atomic Beam Source setup general view

NICA -

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

Stochastic cooling system installed at Nuclotron – prototype for Collider: W = 2-4 GHz, P = 60 W. (collaboration JINR - IKP FZJ - CERN)

HV Electron cooling system design and prototyping: Collaboration JINR – AREI - BINP

Slot-coupler RF structure (by IKP FZJ)

Kicker station

Pick-Up station

RF stations for booster – manufacturing is under completion (BINP) **RF stations for collider – under design (BINP)** HV generator for collider HV e-cooler – tested up to 250 kV Cryostats – first prototypes are tested at JINR

Barrier Bucket cavity (preliminary design, BINP)

RF-2 and RF-3 resonators preliminary design (BINP)

Curved vacuum chambers for booster

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

tenarios

NICA cryogenics

wet turboexpander (300 000 terns/min)

LHEP has unique the most powerful He liquifier complex in Europe:

Cooling power 4 kW at 4.5 K (1000 litre/sec). With new liquid He plant, cooling power for NICA will be doubled up to <u>8 kW at 4.5K</u>

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

Booster synchrotron for NICA

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

Magnets for the Booster

Booster dipole at cryo-test (9690A) and magnetic measurements

Sextupole corrector prototype (for SIS100 and NICA booster) at assembly

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

http://nica.jinr.ru

Quadrupole lense

Magnets for the Collider

Cryo-tests (autumn 2012), magnetic measurements, new cryo-plant at b.217 (power convertors, cryogenics, etc.)serial production...

NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

NICA CF&S

1111

Technological part of the TDR (main equipment, engineering systems, etc), radiation and environmental safety, architecture had been fulfilled. Now – the final stage: capital spending sights. Plan – to submit all documents to the State Expertise – end of 2012.

1 2011 2011 Tat 12

111 111

Thank you for your attention !

MultiPurpose Detector (MPD)

Particle yields, Au+Au @ $\sqrt{s_{NN}} = 8 \text{ GeV}$ (central collisions)

Expectations for 10 weeks of running at $L = 10^{27} \text{cm}^{-2} \text{s}^{-1}$ (duty factor = 0.5)

Particle	Yield	S	Decay	BR	*Effic. %	Yield/10 w
	4π	y=0	mode			
π+	293	97			61	2.6 · 10 ¹¹
K +	59	20			50	4.3 · 10 ¹⁰
р	140	41			60	1.2 · 10 ¹¹
ρ	31	17	e+e-	4.7 · 10 ⁻⁵	35	7.3 · 10 ⁵
ω	20	11	e+e-	7.1 · 10 ⁻⁵	35	7.2 · 10 ⁵
φ	2.6	1.2	e+e-	3 · 10 ⁻⁴	35	1.7 · 10 ⁵
Ω	0.14	0.1	Λ K	0.68	2	2.7 · 10 ⁶
D ⁰	2 · 10 ⁻³	1.6 · 10 ⁻³	Κ ⁺ π ⁻	0.038	20	2.2 · 10 ⁴
J/ ψ	8 · 10 ⁻⁵	6 ·10 ⁻⁵	e+e-	0.06	15	10 ³

*Efficiency includes the MPD acceptance, realistic tracking and particle ID. Particle Yields from experimental data (NA49), statistical and HSD models. Efficiency from MPD simulations. Typical efficiency from published data (STAR)