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Motivation & Overview

It is clear that some kind of extension to the standard model (SM) is required in

order to solve the problems of cosmic baryon asymmetry, dark matter (DM) or

neutrino mass.
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We add to the SM the following exotic SU(2)L multiplet fields:-

fermion 5-plets Nk ~ (1, 5, 0)  3 generations  (k = 1, 2, 3.) 

scalar 6-plets  ~ (1, 6, −1/2)  1 only
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With these exotic SU(2)L multiplet fields:-

fermion 5-plets Nk ~ (1, 5, 0)  3 generations  (k = 1, 2, 3.) 

scalar 6-plets  ~ (1, 6, −1/2)  1 only

the SM gauge invariant interaction Lagrangian is given by (when †  1 )

Lj = SM lepton doublet ;  = SM Higgs ; D = covariant derivative. 

Required fine-tunings of the scalar potential, VS , to ensure stability of the lightest Nk

†  1 (a technically natural limit) [Kumericki et al., arXiv:1204.6597]

 ,  ,  ,  , … must be such that VEV  = 0
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Some important observations & consequences:

When †  1 and  = 0 , the Lagrangian is also invariant under

SM  SM ;  Nk  Nk ;    

which ensures the lightest fermion 5-plet Nk (e.g. N1) be absolutely stable if

M > M1.

dark matter candidate

The Yukawa coupling provides the link to the LH neutrinos

neutrino masses

 but no neutrino Dirac mass term as  = 0 ;

 yet, because of the term in VS , one gets at one-loop
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Some important observations & consequences (continued):

Although the lightest N1 is stable, the heavier 5-plet fermion N2 (or N3 ) may

decay via the Yukawa term

if mass M2,3 > M .
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Although the lightest N1 is stable, the heavier 5-plet fermion N2 (or N3 ) may

decay via the Yukawa term

if mass M2,3 > M .

Suppose couplings hjk contains CP violating phases, then (in principle) a

lepton asymmetry can be generated in the early universe. As a result, the

cosmic baryon asymmetry can be explained via leptogenesis.
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A Model with Exotic Multiplets [4]

Some important observations & consequences (continued):

Although the lightest N1 is stable, the heavier 5-plet fermion N2 (or N3 ) may

decay via the Yukawa term

baryon asymmetry

if mass M2,3 > M .

Suppose couplings hjk contains CP violating phases, then (in principle) a

lepton asymmetry can be generated in the early universe. As a result, the

cosmic baryon asymmetry can be explained via leptogenesis.

So, the challenge is to demonstrate that there exists a parameter space

where all three problems can be addressed consistently.
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A Model with Exotic Multiplets [5]

The key parameters in the model at a glance:

M1 ,     M2 ,     M3 ,     M ,     hjk ,       

5-plet  Nk masses 
coupling

6-plet  

mass

Yukawas

(Lj ,  , Nk)

suppose: N1 is the dark matter

N2 for leptogenesis

then: M1 < M < M2 < M3

The M1 scale is dictated by the constraints from DM

(e.g. relic density):

(co)annihilation of Nk’s mediated by SM gauge bosons

assumed [Cirelli et al., New J. Phys. 11,105005 (09)]

M1  10 TeV

Once the masses M1,2,3

and M are fixed, these

determine the masses for

the light neutrinos.

hjkhik


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Conventionally, in seesaw models with RH neutrinos, “ N1,2,3 ”, leptogenesis is done

via the decays of the lightest Majorana fermion “ N1 ”.
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because the asymmetry from N2 (and N3) decays is usually suppressed

due to the washout processes mediated by N1 ;

and one can only get successful N2-leptogenesis by fully incorporating

flavor effects in the analysis [Barbieri et al., 00; Abada et al., Nardi et al., 06; Josse-

Michaux et al., 07; Bertuzzo et al., 11; Antusch et al.,12].
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Flavored N2-Leptogenesis

With flavor effects, the Boltzmann equations that govern the evolution of the lepton

asymmetry in each flavor are coupled. For example, in the two-flavor regime, one

has from N2 decays

CP asymmetry 

from N2 decays
where z = M2 / T.
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Flavored N2-Leptogenesis

With flavor effects, the Boltzmann equations that govern the evolution of the lepton

asymmetry in each flavor are coupled. For example, in the two-flavor regime, one

has from N2 decays

decay term washout termwhere z = M2 / T.
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Flavored N2-Leptogenesis

With flavor effects, the Boltzmann equations that govern the evolution of the lepton

asymmetry in each flavor are coupled. For example, in the two-flavor regime, one

has from N2 decays

tree-level 

flavor projector

where z = M2 / T.
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asymmetry in each flavor are coupled. For example, in the two-flavor regime, one

has from N2 decays

non-diagonal flavor 

coupling matrix

where z = M2 / T.
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originate mainly from decays in the tau flavor [Bertuzzo et al., 11; Antusch et al.,12].
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Flavored N2-Leptogenesis

With flavor effects, the Boltzmann equations that govern the evolution of the lepton

asymmetry in each flavor are coupled. For example, in the two-flavor regime, one

has from N2 decays

where z = M2 / T.

It turns out that for successful N2-leptogenesis, the total lepton asymmetry should

originate mainly from decays in the tau flavor [Bertuzzo et al., 11; Antusch et al.,12].

This then implies that the flavored decay parameters K2j and K j , which are

functions of the flavor projectors,

and respectively

are constrained.

To ensure enough asymmetry is produced, we typically need K2  1 and K  1.
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An example of a viable setup

Recalling the key parameters in the theory:

M1 ,     M ,     M2 ,     M3 ,     hjk ,       

O(104 )GeV

fixed by DM 

constraints

107 1010 1013

GeV

(hierarchical spectrum)

The requirement for K2  1 and K  1 will

constrain the Yukawa hk for all k.

For illustration, we use K2  65 and K  0.1

0.1

May tune this to control

the size of the Yukawa

couplings given a light

neutrino mass scale

With these parameters and assuming a normal hierarchy of light neutrinos (with

m1  0.002 eV), a possible set of hjk that is consistent with oscillation data is

B  6  1010
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1  SU(2)L 6-plet scalar  .

In this work, we attempt to solve the problems of baryon asymmetry, dark

matter and neutrino mass simultaneously by adding to the SM
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Summary

When the scalar potential is suitably fine-tuned (  = 0 and †  1 ), the

lightest 5-plet fermion N1 can be a dark matter candidate if M1 < M .

3  SU(2)L 5-plet fermions Nk (k = 1, 2, 3) ;

1  SU(2)L 6-plet scalar  .

In this work, we attempt to solve the problems of baryon asymmetry, dark

matter and neutrino mass simultaneously by adding to the SM

A baryon asymmetry can be produced via flavored N2-leptogenesis when

the next-to-lightest 5-plet fermion decay in the early universe.

Light neutrino mass is generated at one-loop with the gauge invariant term

 in the scalar potential providing the vital link.

We have demonstrated that there is a parameter space in this model where

a consistent solution to all three problems can be obtained.


