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Radiation from accelerated charges in classical electrodynamics

Maxwell equations with a moving charge as the source:

0, F" = J" J'(x) = q / dr U (1)6W[z — r(7)] .
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Radiation from accelerated charges in classical electrodynamics

Flux of energy (Poynting vector):
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Total power radiated by an accelerated charge in the non-relativistic case (Larmor’s formula):
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Relativistic generalization (Liénard’s formula, 1898):
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Angular distribution of radiation in classical electrodynamics

dP ¢?52 sin®6

Rectilinear motion with parallel velocity and acceleration: 40 Ar (1 L 5 COS 9)5
1800
1.0
B=009
B <1
o, 3T e

2 2 + 2 2
Particle in circular motion: d_P — q g 1 — sin” 0 cos” ¢
d2 4w (1 — PBcosh)? v2(1 — B cosh)?




Synchrotron radiation by an external field in QED

Three ways of calculating it perturbatively:

® Landau-Lifshitz/Sokolov-Ternov approach (easiest):

1 :
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® Schwinger’s approach (more involved):
|Schwinger, PR (1951), PRD (1973). |

@ Inspired by Hofman & M aldacena’s calculation at strong coupling
(most involved perturbatively): |Hofman &Maldacena, JHEP (2008)|
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Synchrotron radiation in sQED: result with a magnetic field

In a magnetic field, the energy levels of the scalar particle are discrete (Landau levels):

1
E; =m®+ (p*)* + 2|e|B (n+§) . o n=0,1,2,... .

To leading order:

L1 w2228,
RyY )
EkEqu n'In!

g3=p3—k3

B

with
I = ﬁ {10207+ (R0 4 [(R)2((2° = R%)% + (297 = 1)) + 4(k*p" = K2p*) 0"}

k= <20 LK) 20e| B) + (0 + 1)L (K /2]e| B) |

1 / n—n’
= (W'D LY ((K*)?/2le| B) .
le| B
A great simplification happens in the semi-classical limit: ¢ — 0%, = g'ngE
m
2elB? N3 oy i
P — PC d s — — = d K .
1/ y f(y) P, 5 f(y) 87 (1 +§y)3/ T 5/3(1;)
Y
le| BE

—> P=P,|1-397

2 Sokolov &Ternov, P (1968)
p— + O(f ):| ) |ooov ernov, Pergamon |



Two ways of looking at D3-branes: perturbative point of view

Type IIB string theory in 10-dimensional Minkowski space + open strings: S

L5 |

Massless spectrum of the closed string: -
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NS sector: (G5 (graviton), B>, ¢ (dilaton), & " J
at
RRsector: Cy, Cy , C4 T /l
Massless spectrum of the open string: A, “"‘
Action of the system: S = Sclosed + Sopen + Sint N (coincident)

Atlow enegies (E,p < 1/l;): Sipi — 0, Selosed = Selosed(free)  (decoupling limit)

In addition, we need: gs — 0 , with 4mg N = g%MN = )\ constant  (‘tHooftlimit)

— S SN=4 SYM Sclosed(free)



Two ways of looking at D3-branes: gravity point of view

C'y in the massless spectrum of SUGRA must couple to (3+1)-dimensional dynamical objects:

|:> Look for non-trivial classical solutions from the SUGRA action
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We want solutions which extend in 4 dims and are spherical in 6 dims. The result is:
ds? = f(r)" 2 (=dt? + da®) + f(r)"*(dr? +17d03)
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From calculations of the RR charge and dilaton absortion cross sections: ~ |Polchinski, PRL (1995)|  [Klebanov, 97
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Decoupling limit in SUGRA

3-branes

lIl. by Carin L. Cain
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Decoupling between modesat 7 > L and T SJ L:

EOO = [gtt(r)/gtt(oo)]lﬂEr = %Er i S ~ Sclosed(MiIlkOWSki) —+ Sclosed(AdSB X 55)
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In order for the classical SUGRA approximation to be valid, weneed: L > [, = A > 1



Maldacena’s conjecture

f 2
“Type IIB string theory on (AdSs x S°)y plus some appropriate

boundary conditions (and possibly also some boundary degrees of
freedom) is dual to ' =4 d = 3+1 U(N) super Yang-Mills theory.”

\. J

|Ma|dacena, Adv.Theor. Math. Phys., 1998|




Calculation of correlation functions

<exp/d4x ¢0(gg)(’)(gg)> — e—]SUGRA[Cb]

CFT p=¢lpo]

|Gubser, Klebanov, Polyakov (1998)

Witten (1998)
Scalar operators of scale dimension 2\ will couple to massive scalar fields:
Scale T = Az 1
transformation: A ?(()jrz(s:F-(l;ndence i A= 5(65 + Vd? 4 4m?) .
O(x) = A2 O0(\x) P

Correlation functions of the energy-momentum tensor can be obtained by coupling it to the graviton:
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CFT h=h[h]




N = 4 superYang-Mills

Supersymmetry algebra:

Field content;

Q" boson) = |fermion)
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@ R-symmetry: rotations of supercharges, U(1)r and SU(4)g ~ SO(6)R.




D7-branes and fundamental quarks
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NC (coincident) Nf (coincident)
Field content: A" =4 SYM + N; hypermultiplets in the f. rep.

7-7 modes decouple at low energies, \; = A\3(27l,)* N;/N,
Probe limit: N, > Nf i The theory remains conformal, 3 & A3N;/N,

Quark loops are suppressed (no influence on the geometry)




Radiation from a heavy quark in circular motion at strong coupling

Consider a charged particle forced to go in circular motion in classical electrodynamics:

Trailing string in circular motion with a D3-D7 setup: |Athanasiou, Chesler, Liu, Nickel, & Rajagopal, PRD (2010)

Boundary stress

AdSs radial
direction

Other works with similar results:

|Mikhai|ov (2003)| |Chernicoff, Antonio Garcia, Guijosa, & Pedraza (201 1)|

|Hatta, lancu, Mueller, & Triantafyllopoulos (2011) | |Baier (2011) |




Motivation for further study

@ Quantum effects present in the standard leading-order perturbative evaluation of synchrotron radiation in QED:

® Quantization of the trajectory for strong magnetic fields: E, £’ } \/ |€|B

® Recoil of the electron for emission of high-energy photons: F’ 7§ k|

@® Loops and dimensional reduction:

Fermion propagator ina magnetic field: |SChWinger (1951)| |Gusynin, Miranski, & Shovkovy (1996) |
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For strong magnetic field, the lowest Landau-level dominates:

(1 —iy'y*sgn(eB)) .
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Magnetic brane solutions

@® Non-trivial solutions of the Einstein-Maxwell action: |D'Hoker&Kraus,JHEP (2009)|
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@ Equivalent to introduce a magnetic field in A’ = 4 SYM theory associated tothe U(1)r R-charge

@® They interpolate between AdS; at high energies and a 1+1 dimensional conformal field theory
at low energies:

d82 _ —e2W(T)dt2+e_2W(T)d7’2—|—62V(T)[<d$1)2+(d3]2)2]—|—e2w(r) (d$3)2 7

For r —o00 : AdS;

For r— 0" : AdS; x T2

dr* B
ds = —3r°de> + o + e+ ()P + 32 ()



The magnetic field as an effective medium

@ Modifiying the background geometry is equivalent to considering the effect of the magnetic field to
arbitrary loop orders.

@® This implies that even neutral particles will be affected by the magnetic field.

Y

QED analogy: photon splitting

=

- 5) : 6 Adler et al,, PRL 25, 1061 (1970)
Probability: P ~ S (ﬂ) Lsind ) ., | |
m B, |Bialynicka—BiruIa etal., PRD 2,2341 (1 970)|

for (B/Be)(w/m)sinf < 1

@® The dispersion relation of the massless excitations will be modified by the magnetic field:

I:> The vacuum behaves effectively as a birefringent medium

| Dittrich & Gies, hep-ph/9806417 |




Energy-flux a la Hofman-Maldacena

® We want to calculate the expectation value of the energy-momentum tensor in a well localizes state:

<O]@;T0i(x)@q|0> ~ flux of energy

2 4 . Qg :U(2) + ” 2
O,= [ dweexp| ———— ) O(z), qo > 1 (well defined momentum
o and position)

@® |n a conformal field theory, isotropic energy distribution for scalar states in the COM frame

i no jets from scalar states in the COM for a conformal field theory  [Hofman &Maldacena, JHEP (2008)

@® This should be different in the presence of a magnetic field



Accelerated mesons

® Fundamental fields are not gauge-invariant quantities. According to the AdS/CFT correspondence,
we have to rely on (composite) chiral fields.

® In N =4 SYMtheory, the chiral fields have no quasi-particle structure:

p(w)

@® Using the D3-D7 set-up we can construct (stable) meson states:

p(w)

p(w,q) = —21m Gr(w, q)

Crlw, q) = —i / a2 (1) (O (), O(0)])

p(w,0) ~ w244 [Son & Starinets, JHEP 09, 042 (2002) |

|Kruczenski etal., JHEP 07, 049 (2003) |

[Myers et al., JHEP 11,091 (2007) |




Conclusions

= The distribution of radiation from an accelerated chargein a
strongly-coupled field theory should be qualitatively differ-
ent from the classical case once all the quantum effects are
considered.

= \We suspect that the classical distribution of radiation is ob-
tained in a strongly-coupled conformal field theory once we
force the test particle to follow a classical trajectory.

= Dimensional reduction in a magnetic field is a non-
perturbative effect due to the contributions from loops in-
volving particles which interact with the external field
(=> neutral particles also suffer dimensional reduction)

= Applications: strongly-coupled systems or systems with ex-
tremely large magnetic fields: heavy-ion collisions (B ~ 10* G),
neutron stars (B ~ 10" G), ...
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