

Search for Z + γ Events with Large Missing Transverse Energy

James Kraus University of Mississippi For the DØ Collaboration

GMSB SUSY Decays

 In Gauge-Mediated Symmetry-Breaking (GMSB), gravitino (G̃) is the lightest super-symmetric (SUSY) particle

- Assuming R-parity is conserved, SUSY particles are produced in pairs
 - Cascade decays to next-lightest SUSY particle (NLSP)
 - If NLSP is neutralino $(\tilde{\chi}_1^0)$, can decay to $Z\tilde{G}$ or $\gamma\tilde{G}$

GMSB SUSY Decays

- If lightest neutralino more higgsino than bino-like, $\tilde{\chi}^{0}_{1} \rightarrow Z\tilde{G}$ significant
- Generate signal with ISAJET
 + PROSPINO next-to-leading
 order (NLO) corrections

- For this analysis, consider
 "Model Line E" from
 H. Baer, P. G. Mercadante, X. Tata, and Y. Wang, Phys. Rev. D 62, 095007 (2000).
 - Vary SUSY breaking scale Λ in our fit from 70 to 95 TeV
 - The masses of SUSY particles vary with Λ

The DØ Experiment

- A multipurpose particle detector
- Innermost detectors are the trackers, followed by calorimetry and muon chambers

Electrons and Photons

- Both e and γ are identified using isolated EM calorimeter clusters
 - Must also be isolated in hollow cone of $0.05 < \Delta R < 0.4$ in tracker
 - Multivariate techniques separate jets from e, γ

- We differentiate e from γ by presence of matched track
 - For γ, also require minimal energy deposits in tracker along probable e paths

Muons and Missing Energy

- Muons are reconstructed by matching tracks in central tracker to hits in tracking system outside calorimeter
 - Calorimeters absorb other particles
 - Use central track for momentum estimate

- To determine Missing Energy, take the negative vector sum of calorimeter energy with µ, e, jet corrections
 - Possibly from missed particle
 - Can arise from mismeasurement

Event Selection

- We consider events with two isolated, oppositely charged leptons and one photon
 - Leptons are either ee or $\mu\mu$
 - Photons from Central Calorimeter only
- We require the invariant mass of the dileptons to be consistent with the Z mass
- We require MET > 30 (40) GeV for $ee\gamma(\mu\mu\gamma)$
 - We also require MET significance > 5.0
 - MET significance is the number of σ MET is from 0, based on momentum resolution of objects in event

Standard Model Backgrounds

- Zγ, diboson, tt, and Z+jet process can all mimic signal
- The most significant background for this analysis is Zγ + mismeasured MET
 - Estimated using Pythia, with NLO corrections for ISR
 - To reduce FSR, $\Delta R(l,\gamma) > 0.7$ and M($l\gamma$) > 120 GeV
 - FSR contribution fit in low MET region, found to be small

Diboson and top Backgrounds

- Diboson (WW, WZ, ZZ) modeled with PYTHIA with NLO corrections
- tt modeled with ALPGEN + PYTHIA with approximate next-to-nextto-NLO corrections

Z + jet Background

- Z+jets background estimated using data
- Two methods used, give consistent results
- First method uses photon-jet NN shape
 - Templates of photon & jet fake NN shapes derived from MC
 - Fit to data NN shape for fake estimate
- Second uses events with two leptons + photon-like jet
 - Sample normalized using jet to photon fake ratio calculated in a jet dominated sample

Data/MC Comparison

- Find good agreement
- Find 1 event in signal region, expect 1.2
- However, only looking at MET ignores other significant information

	$ee\gamma + \not\!\!\!E_T$ Signal region	$\mu\mu\gamma + \not\!\!\!E_T$ Signal region
Signal ($\Lambda = 80 \text{ TeV}$) Signal ($\Lambda = 90 \text{ TeV}$)	$\begin{array}{c} 3.28 \pm 0.09 \pm 0.24 \\ 1.48 \pm 0.03 \pm 0.11 \end{array}$	$\begin{array}{c} 2.42 \pm 0.08 \pm 0.31 \\ 1.06 \pm 0.03 \pm 0.14 \end{array}$
$Z\gamma$ $Z+jet$ $WW + WZ + ZZ$ $t\bar{t}$	$\begin{array}{c} 0.23 \pm 0.05 \pm 0.02 \\ 0.09 \pm 0.08 \pm 0.01 \\ 0.13 \pm 0.05 \pm 0.01 \\ 0.05 \pm 0.01 \pm 0.01 \end{array}$	$\begin{array}{c} 0.43 \pm 0.05 \pm 0.40 \\ 0.17 \pm 0.16 \pm 0.02 \\ 0.08 \pm 0.03 \pm 0.01 \\ 0.04 \pm 0.01 \pm 0.01 \end{array}$
All backgrounds Data	$ \begin{array}{r} 0.05 \pm 0.01 \pm 0.01 \\ 0.50 \pm 0.11 \pm 0.03 \\ 0 \end{array} $	$ \begin{array}{r} 0.04 \pm 0.01 \pm 0.01 \\ 0.71 \pm 0.17 \pm 0.40 \\ 1 \end{array} $

Boosted Decision Tree (BDT) Discriminant

	$ee\gamma + \not\!\!\!E_T$ BDT > 0.8	$\mu\mu\gamma + \not\!\!\! E_T$ BDT > 0.8
Signal ($\Lambda = 80 \text{ TeV}$)	$3.95 \pm 0.10 \pm 0.50$	$2.69 \pm 0.08 \pm 0.33$
Signal ($\Lambda = 90 \text{ TeV}$)	$1.73 \pm 0.05 \pm 0.21$	$1.22 \pm 0.04 \pm 0.15$
$Z\gamma$	$0.23 \pm 0.11 \pm 0.02$	$0.10 \pm 0.03 \pm 0.20$
Z+jet	-	-
WW + WZ + ZZ	$0.06 \pm 0.04 \pm 0.01$	$0.16 \pm 0.19 \pm 0.02$
$t\bar{t}$	$0.14 \pm 0.03 \pm 0.02$	$0.05 \pm 0.02 \pm 0.01$
All backgrounds	$0.43 \pm 0.12 \pm 0.03$	$0.31 \pm 0.10 \pm 0.20$
Data	0	1

- To train BDT to separate GMSB, backgrounds
- Use 14 variables as inputs
 - $\mathbf{p}_{\mathrm{T}}(\mathbf{l}_{1}), \mathbf{p}_{\mathrm{T}}(\mathbf{l}_{2}), \mathbf{p}_{\mathrm{T}}(\boldsymbol{\gamma})$
 - $p_{T}^{(\parallel)}, p_{T}^{(\parallel)})$
 - $\mathbf{p}_{\mathrm{T}}(\mathbf{I}_{1}) \mathbf{p}_{\mathrm{T}}(\mathbf{\gamma}), \mathbf{p}_{\mathrm{T}}(\mathbf{I}_{2}) \mathbf{p}_{\mathrm{T}}(\mathbf{\gamma})$
 - MET, MET significance
 - Components of MET \perp and || to Z p_T
 - $M(h\gamma), M_{T}(\gamma, MET)$

Limits on GMSB

- Results consistent with background, so proceed to set limits
- Consider events
 passing BDT > 0.8
 using CLs method
 with LLR test statistic
- Exclude $\Lambda < 87 \text{ TeV} [M(\tilde{\chi}_{1}^{0}) < 151 \text{ GeV}]$ at 95% CL

Λ [TeV]	$\sigma_{\rm p}$ [fb]	$\begin{array}{c} M_{\tilde{\chi}_1^0} \\ [\text{GeV}] \end{array}$	obs. (exp.) limit on $\sigma_{\rm p}$ [fb]
70 75 80 85 90 95	$\begin{array}{c} 618 \\ 419 \\ 290 \\ 205 \\ 146 \\ 106 \end{array}$	$ \begin{array}{r} 111 \\ 123 \\ 135 \\ 147 \\ 159 \\ 169 \\ \end{array} $	< 234 (223) < 172 (150) < 167 (140) < 163 (137) < 186 (155) < 205 (159)

Summary/Conclusions

Submitted to PRL: arXiv:1203.5311v1 [hep-ex]

- Have searched for new physics in the Zγ+MET final state in pp collisions at s^{1/2} =1.96 TeV in 6.2 fb⁻¹ of data collected at DØ
- In GMSB "Model Line E", exclude $\Lambda < 87$ TeV $[M(\tilde{\chi}^{0}_{1}) < 151$ GeV] at 95% CL

