

Λ_{b} lifetime at DØ/Tevatron

Peter Ratoff Lancaster University

∧_b lifetime at D0/Tevatron - Peter Ratoff

A total of 15 b baryons are predicted (counting quark content only)

charmless b baryon (10 in total) multiplet

J = 3/2 b Baryons

b baryons at hadron colliders

- Unique to hadron colliders (not produced in B factories)
- Produced copiously at the Tevatron
- At start of Run2 (2002): only $\Lambda_{\rm b}$ was established (~20 events)

- Since 2007: 5 new *ground state* b baryons observed by CDF/DØ
- Interesting mass & lifetime predictions, using different models
- However, very challenging analysis required

 $\Omega_{\rm b}$ (bss)

J=1/2, 1 b

ground states

DØ 2007

b hadron lifetimes

In the simple quark spectator model, the b quark decays independently of the other quarks

 \rightarrow The lifetimes of all b hadrons are expected to be equal

Simplicity of the weak interactions overshadowed by the complexity of strong interactions!

→ Measurements of b hadron lifetimes provide window into the importance of non-spectator contributions to b hadron decays

Experimental Status

• Measurements by DØ and CDF in $\Lambda_b \to J/\psi\Lambda$:

DØ (2005): $c\tau_{\Lambda_b} = 366.0 + 65.2 + 12.9 \text{(syst)} \ \mu m$ DØ (2007): $c\tau_{\Lambda_b} = 365.1 + 39.1 + 39.1 + 12.7 \text{(syst)} \ \mu m$ CDF (2007): $c\tau_{\Lambda_b} = 477.6 + 25.0 + 2$

- Long standing discrepancy between these measurements.
- The CDF (2011) measurements of $\tau(\Lambda_b)$ and $\tau(\Lambda_b)/\tau(B^0)$ are more than 2σ higher than the W.A. (PDG < 2011).

Theoretical Status

• Precise predictions of *b*-hadron lifetimes are difficult to calculate. Ratios are predicted with fairly high accuracy by heavy quark effective theory (HQET). Up to $\mathcal{O}(1/m_b^4)$,

$$\frac{\tau_{\Lambda_b}}{\tau_{B_d}}\Big|_{NLO} = 0.88 \pm 0.05 \qquad \Rightarrow \mathsf{cT}(\Lambda_b) \approx 378 - 423 \ \mu \mathsf{m}$$

while the W.A. is $\tau_{\Lambda_b}/\tau_{B_d} = 1.00 \pm 0.06$

 $(CDF = 1.020 \pm 0.030 \pm 0.008 \text{ and } D\emptyset = 0.811^{+0.096} - 0.087 \pm 0.034).$

CDF measurement in the $J/\psi \Lambda$ final state contradicts the expected hierarchy $\tau(\Lambda_b) < \tau(B^0)$

b baryon search: data reprocessing – *extended* tracking

Increase of reconstruction efficiency

Opening up the IP cut: (Before) (After)

∧_b lifetime at D0/Tevatron - Peter Ratoff

Reconstruction of $\Lambda_b \& B^0$ decays

Analysis strategy:

- Exploit the very similar event topologies of these decays
- > Utilize the very precisely known W.A. B⁰ lifetime
 - to cross-check the event selection and analysis method used for the Λ_b lifetime measurement

Event selection:

- \Box 2 oppositely charged muons forming a good vertex (J/ ψ)
- \Box 2 tracks with significant IP forming a good vertex (Λ , K_{S}^{0})
 - $P(\Lambda)$ points back with 1⁰ to the J/ ψ vertex (suppress background from heavier b baryons to Λ_b)
- **□** Fit to a common vertex for the Λ (K⁰_s) and 2 muon tracks, constrained to the mass of the J/ψ
- The trajectories of the decay products are readjusted
 The primary vertex is recalculated to exclude muon tracks
 Several optimization cuts to maximize S / V(S + B)
 - Λ decay length > 0.3 cm, significance > 3.5
 - **P**_T (J/ψ) > 4.5 GeV, etc
 - Λ_{b} isolation

Main backgrounds: COMBINATORIAL and PARTIALLY RECONSTRUCTED b HADRON DECAYS

PROMPT: J/ ψ from PV (~70% of total background) NON-PROMPT: J/ ψ from *b* hadron decays

Lifetime fits

tion effects.

17

18

19

Weidefine signal mass regions primarily due to detector ce

In order to extract the lifetimes, we perform sepa

unbinned maximum likelihood fits for ${}^{p}\!X_{b}$ and B_{d} ca

dates The likelihood function (f) depends on the r

The Λ_b lifetime is extracted from a simultaneous unbinned maximum likelihood fit to M, λ and σ (PDL uncertainty) distributions:

$$\mathcal{L} = \prod_{j} \left[f_s \mathcal{F}_s(m_j, \lambda_j, \sigma_j^{\lambda}) + (1 - f_s) \mathcal{F}_b(m_j, \lambda_j, \sigma_j^{\lambda}) \right]$$

cτ(B⁰) = 452.2 ± 7.6 μm

 $c\tau(\Lambda_{\rm b}) = 390.7 \pm 22.4 \ \mu m$

Systematic Uncertainties

	Source	$\Lambda_b \; (\mu { m m})$	$B_d \; (\mu { m m})$	Ratio	
	Mass model	2.2	6.4	0.008	
	Proper decay length model	7.8	3.7	0.024	
	Proper decay length uncertainty	2.5	8.9	0.020	
	Partially reconstructed b hadrons	2.7	1.3	0.008	
% of $B^0 \leftrightarrow \bullet$	$B_s o J/\psi K_S$	_	0.4	0.001	
	Alignment	5.4	5.4	0.002	
	Total	10.4	12.9	0.033	

Mass model

- Double-Gaussian for signal.
- Exponential decay for nonprompt component.
- Second order polynomial for non-prompt component.

λ model

- Double-Gaussian for resolution function.
- Non-prompt exponentials convoluted with the resolution.
- Only one negative exponential.
- Only one positive exponential.

σ model

- Extracted from data by bkg. subtraction.
- •Used **o** distributions from MC generated with different input lifetimes.

Lifetime Results

• Using full DØ Run2 dataset (10.4 fb⁻¹), measured the $\Lambda_{\rm b}$ lifetime in the exclusive decay mode J/ ψ Λ

 $\tau(\Lambda_{\rm b}) = 1.303 \pm 0.075$ (stat) ± 0.035 (sys) ps

Consistent with previous DØ measurements and the PDG World Average (2011) $1.425 \pm 0.032 \text{ ps}$

• Method was thoroughly tested in $B^0 \rightarrow J/\psi K_s^0$ decays

 $\tau(B^0) = 1.508 \pm 0.025$ (stat) ± 0.043 (sys) ps

in very good agreement with the WA value $1.519 \pm 0.007 \text{ ps}$

$\Lambda_{\rm b}$ lifetime

$\Lambda_{\rm b}$ / B⁰ lifetime ratio

• These measurements can be used to calculate the ratio of lifetimes (with many systematic uncertainties reduced):

 $\tau(\Lambda_{\rm b})/\tau(B^0) = 0.864 \pm 0.052 \text{ (stat)} \pm 0.033 \text{ (sys)}$

• Theoretical predictions are in excellent agreement with ⁷Our ⁷⁵ [15] measurelating the difference between the lifetime ratio for each ⁷⁶ ³⁰ systematic source and the ratio of the nominal measure-⁷⁷ [16] ³¹ ments. These manoertainties are combined in quadrature ⁷⁸ ³² as shown in Table I. This result is in good agreement with ⁷⁹ [17] ³³ the HOET prediction of 0.88'± 0.05 [5] and compatible ⁸⁰ ³⁴ with the currentAworld-average, 1.00 ± 0.06 [4], but dis-⁸¹ ³⁵ agree with the most recent CDF Collaboration measure-⁸³

N.B. **New** HFAG value (including DØ result) = 0.930 ± 0.020 *arXiv:1207.1158v1 (5 July 2012)*

K.Toms (ATLAS) – this conference Ratio of Λ_b and B_d lifetime

∧_b lifetime at D0/Tevatron - Peter Ratoff

07/07/2012

Backup slides

Fit models

CONSISTENCY CHECKS

- Measured the B_d and A_b lifetimes with an alternative method, less dependent on background modeling, but statistically inferior:
 - Extract signal (mass fits) in bins of PDL. χ² fits return: **c**τ(B_d)= 458.3 ± 8.9 (stat.) μm **c**τ(Λ_b)= 391.4 ± 35.8 (stat.) μm
- Divided data in different data taking epochs, η, number of SMT hits: results are statistically consistent.

CONSISTENCY CHECKS (2)

- Our results remain stable when:
 - All requirements in variables used in the optimization are removed one at a time.
 - Apply looser and tighter cuts to kinematic variables.
 - The high-end tail of the uncertainty distribution is removed.
 - Used the same selection criteria as in previous DØ lifetime measurements.

Requirement	$ au_{B_d}(\mu m)$	$ au_{\Lambda_b}(\mu m)$
Nominal	452.2 ± 7.6	390.7 ± 22.4
Allow multiple candidates/event	$451.7~\pm~7.6$	390.2 ± 22.4
No V^0 collinearity cut	448.3 ± 7.4	388.5 ± 22.2
No V^0 distance and significance cut	454.6 ± 7.6	390.5 ± 22.0
No $\Delta R(\mu^+,\mu^-)$ cut	451.5 ± 7.5	395.5 ± 22.3
No B Isolation cut	449.6 ± 7.4	394.1 ± 22.4
No $p_T(J/\psi)$ cut	452.6 ± 7.6	391.6 ± 22.3
No $p(B)$ cut	452.2 ± 7.6	390.7 ± 22.4
No vertex $\chi^2(B)$ cut	455.1 ± 7.7	387.1 ± 22.7
No p_T threshold cut	448.3 ± 7.5	390.0 ± 23.3
* $p_T(V^0) > 1.4 \text{ GeV/c}$	433.8 ± 6.5	398.1 ± 23.6
$p_T(V^0) > 1.6 \text{ GeV/c}$	441.5 ± 7.0	397.3 ± 23.0
$p_T(V^0) > 1.8 \text{ GeV/c}$	452.2 ± 7.6	390.7 ± 22.4
$p_T(V^0) > 2.0 \text{ GeV/c}$	453.5 ± 7.9	387.7 ± 22.9
$p_T(V^0) > 2.2 \text{ GeV/c}$	444.4 ± 8.1	407.0 ± 23.4
$p_T(V^0) > 2.4 \text{ GeV/c}$	447.0 ± 8.7	401.8 ± 24.1

σ_{max} (μm)	$ au_{B_d}(\mu m)$	$ au_{\Lambda_b}(\mu m)$					
100	452.0 ± 7.5	391.3 ± 22.2					
150	452.9 ± 7.6	391.8 ± 22.3					
200	453.0 ± 7.6	391.0 ± 22.4					
300	452.2 ± 7.6	390.7 ± 22.4					

CONSISTENCY CHECKS (3)

- Debugged the maximum likelihood fit code by generating pseudo-experiments:
 - We recover the input lifetime.
 - We find a lifetime error consistent with expectations.

