Dynamical Dark Matter

Collider Signatures and Direct Detection

Brooks Thomas (University of Hawaii)

Work done in collaboration with Keith Dienes:

[arXiv:1106.4546]

[arXiv:1107.0721]

[arXiv:1203.1923]

[arXiv:1204.4183] also with Shufang Su

[arXiv:1207.xxxx] also with Jason Kumar

Dynamical Dark Matter (DDM)

- The dark-matter candidate is an <u>ensemble</u> consisting of a vast number of constituent particle species whose collective behavior transcends that of traditional dark-matter candidates.
- Dark-matter stability is not a requirement; rather, the individual abundances of the constituents are <u>balanced against decay rates</u> across the ensemble in manner consistent with observational limits.
- Cosmological quantities like the total dark-matter relic abundance, the composition of the dark-matter ensemble, and even the dark-matter equation of state exhibit a <u>non-trivial time-dependence</u> beyond that associated with the expansion of the universe.

Keith's talk:

- General features of the DDM framework
- Characterizing the cosmology of DDM model
- An explicit realization of the DDM framework which satisfies all applicable constraints

This talk:

 Phenomenological consequences of DDM ensembles and methods of distinguishing them from traditional DM candidates experimentally.

Overview:

In this talk, I'll discuss methods for distinguishing DDM ensembles at the LHC...

K. Dienes, S. Su, BT [arXiv:1204.4183]

- In many DDM models, constituent fields in the DDM ensemble can be produced alongside SM particles by the decays of additional heavy fields.
- Evidence of a DDM ensemble can be ascertained in characteristic features imprinted on the invariant-mass distributions of these SM particles.

and direct-detection experiments.

K. Dienes, J. Kumar, BT [arXiv:1205.xxxx]

• DDM ensembles can also give rise to distinctive features in recoil-energy spectra.

These are just two examples which illustrate that DDM ensembles give rise to observable effects which can serve to distinguish them from traditional DM candidates

Searching for Signs of DDM at the LHC

- In a wide variety of DM models, dark-sector fields can be produced via the decays of some heavy "parent particle" ψ .
- Strongly interacting ψ can be produced copiously at the LHC. $SU(3)_c$ invariance requires that such ψ decay to final states including not only dark-sector fields, but **SM quarks and gluons** as well.
- In such scenarios, the initial signals of dark matter will generically appear at the LHC in channels involving jets and \mathbb{E}_T .

Further information about the dark sector or particles can <u>also</u> be gleaned from examining the <u>kinematic distributions</u> of visible particles produced alongside the DM particles.

As we shall see, such information can be used to distinguish DDM ensembles from traditional DM candidates on the basis of LHC data.

Traditional DM Candidates

- Let's begin by considering a dark sector which consists of a traditional dark-matter candidate χ a **stable** particle with a mass m_{χ} .
- For concreteness, consider the case in which ψ decays primarily via the **three-body** process $\psi \to jj\chi$ (no on-shell intermediary).
- Invariant-mass distributions for such decays manifest a characteristic shape.
- Different coupling structures between ψ , χ , and the SM quark and gluon fields, different representations for ψ , etc. have only a small effect on the distribution.
- m_{jj} distributions characterized by the presence of a mass "edge" at the kinematic endpoint:

$$m_{jj} \le m_{\psi} - m_{\chi}$$

Parent Particles and DDM Daughters

In general, the constituent particles χ_n in a DDM ensemble and other fields in the theory through some set of effective operators $O_n^{(\alpha)}$:

$$\mathcal{L}_{\text{eff}} = \sum_{\alpha} \sum_{n=0}^{N} \frac{c_{n\alpha}}{\Lambda^{d_{\alpha}-4}} \mathcal{O}_{n}^{(\alpha)} + \dots$$

As an example, consider a theory in which the masses and coupling coefficients of the

 χ_n scale as follows:

*m*₀: mass of lightest constituent

$$c_{n\alpha} = c_{0\alpha} \left(\frac{m_n}{m_0}\right)^{\gamma_\alpha}$$

$$m_n = m_0 + n^{\delta} \Delta m$$

 δ : scaling index for the density of states

 γ_{α} : scaling indices for couplings

Including coupling between ψ and the darksector fields χ_n .

∆m : mass-splitting parameter

Parent-Particle Branching Fractions

• Once again, let's consider the simplest non-trivial case in which ψ couples to each of the χ_n via a four-body interaction, e.g.:

$$\mathcal{L}_{\text{eff}} = \sum_{n} \left[\frac{c_n}{\Lambda^2} (\overline{q}_i t_{ij}^a \psi^a) (\overline{\chi}_n q_j) + \text{h.c.} \right]$$

• Assume partent's total width Γ_{ψ} dominated by decays of the form $\psi \rightarrow jj\chi_{n}$.

Coupling stength increases with n for γ>0...

...but phase space <u>always</u> decreases with n.

• Branching fractions of ψ to the different χ_n controlled by Δm , δ , and γ .

n

DDM Ensembles & Kinematic Distributions

• Evidence of a DDM ensemble can be ascertained from characteristic features imprinted on the kinematic distributions of these SM particles.

• For example, in the scenarios we're considering here, the (normalized) dijet invariant-mass distribution is given by

$$\frac{1}{\Gamma_{\psi}} \frac{d\Gamma_{\psi}}{dm_{jj}} = \sum_{n=0}^{n_{\text{max}}} \left(\frac{1}{\Gamma_{\psi n}} \frac{d\Gamma_{\psi n}}{dm_{jj}} \times BR_{\psi n} \right)$$

Increasing δ

- $\gamma = -2$
- $\gamma = -1$
- $\gamma = 0$
- $\gamma = 1$
- $\gamma = 2$
- $m_{\chi} = m_0$

Two Characteristic Signatures:

1.) Multiple distinguishable peaks

Large δ , Δm : individual contributions from two or more of the χ_n can be resolved.

2. The Collective Bell

Small δ , Δm : Individual peaks cannot be distinguished, mass edge "lost," m_{jj} distribution assumes a characteristic shape.

Increasing δ

- $\gamma = -2$
- $\gamma = -1$
- $\gamma = 0$
- $\gamma = 1$
- $\gamma = 2$
- $m_{\chi} = m_0$

Two Characteristic Signatures:

1. Multiple distinguishable peaks

Large δ , Δm : individual contributions from two or more of the χ_n can be resolved.

2.) The Collective Bell

Small δ , Δm : Individual peaks cannot be distinguished, mass edge "lost," m_{jj} distribution assumes a characteristic shape.

But the **REAL** question is...

How well can we distinguish these features in practice?

In other words: to what degree are the characteristic kinematic distributions to which DDM ensembles give rise truly <u>distinctive</u>, in the sense that they cannot be reproduced by <u>any</u> traditional DM model?

The Procedure:

- Survey over traditional DM models with different DM-candidate masses m_{χ} and coupling structures.
- Divide the into bins with width determined by the invariant-mass resolution $\Delta m_{\rm jj}$ of the detector (dominated by jet-energy resolution $\Delta E_{\rm j}$).
- For each value of m_{χ} in the survey, define a χ^2 statistic $\chi^2(m_{\chi})$ to quantify the degree to which the two resulting m_{ij} distributions differ.

$$\chi^2(m_\chi) = \sum_k \frac{[X_k - \mathcal{E}_k(m_\chi)]^2}{\sigma_k^2}$$

$$\chi_{\min}^2 = \min_{m_{\chi}} \left\{ \chi^2(m_{\chi}) \right\}$$

• The minimum χ^2 value from among these represents the degree to which a DDM ensemble can be distinguished from any traditional DM candidate.

Results for N_e = 1000 signal events (e.g., $pp \rightarrow \psi \psi$ for TeV-scale parent, L_{int} < 30 fb⁻¹)

BRs to all χ_n with n > 1 suppressed: lightest constituent dominates the width of ψ .

Results for N_e = 1000 signal events (e.g., $pp \rightarrow \psi \psi$ for TeV-scale parent, L_{int} < 30 fb⁻¹)

Density of states large enough to overcome γ suppression for small δ.

BRs to all χ_n with n > 1 suppressed: lightest constituent dominates the width of ψ .

Results for N_e = 1000 signal events (e.g., $pp \rightarrow \psi \psi$ for TeV-scale parent, L_{int} < 30 fb⁻¹)

Density of states large enough to overcome γ suppression for small δ.

BRs to all χ_n with n > 1 suppressed: lightest constituent dominates the width of ψ .

Next-to-lightest constituent χ_1 dominates the width of ψ .

Results for N_e = 1000 signal events (e.g., $pp \rightarrow \psi \psi$ for TeV-scale parent, L_{int} < 30 fb⁻¹)

two distinct m_{ii} peaks.

Results for N_e = 1000 signal events (e.g., $pp \rightarrow \psi \psi$ for TeV-scale parent, L_{int} < 30 fb⁻¹)

two distinct m_{ii} peaks.

DDM Direct-Detection Experiments

- Direct-detection experiments offer another possible method for distinguishing DDM ensembles from traditional DM candidates.
- After the initial observation an excess of signal events at such an experiment, the shape of the <u>recoil-energy spectrum</u> associated with those events can provide additional information about the properties of the DM candidate.
- A number of factors impact the shape of the recoil-energy spectrum in a generic dark-matter scenario. <u>Particle physics</u>, <u>astrophysics</u>, and <u>cosmology</u> all play an important role.

Direct Detection of DDM

In this talk, I'll adopt the following standard assumptions about the particles in the DM halo as a definition of the "standard picture" of DM:

- Total local DM energy density: $\rho_{\rm tot}^{\rm loc} \approx 0.3~{\rm GeV/cm}^3$.
- Maxwellian distribution of halo velocities for all χ_j .
- Local circular velocity $v_0 \approx 220$ km/s, galactic escape velocity $v_e \approx 540$ km/s.
- Woods-Saxon form factor.
- Spin-independent (SI) scattering dominates.
- Isospin conservation: $f_{pj} = f_{nj}$.
- Local DM abundance \propto global DM abundance: $\rho_j^{\rm loc}/\rho_{\rm tot}^{\rm loc} \approx \Omega_j/\Omega_{\rm tot}$.

Departures from this standard picture (isospin violation, non-standard velocity distributions, etc.) can have important experimental consequences.

Here, we examine the consequences of replacing a traditional DM candidate with a DDM ensemble, with all other things held fixed.

Recoil-Energy Spectra: Traditional DM

- Let's begin by reviewing the result for the spin-independent scattering of a traditional DM candidate χ off a an atomic nucleus N with mass m_N .
- Recoil rate exponentially suppressed for $E_R \ge 2m_\chi^2 m_N v_0^2 / (m_\chi + m_N)^2$

$$E_R \ge 2m_{\chi}^2 m_N v_0^2 / (m_{\chi} + m_N)^2$$

Two Mass Regimes:

Low-mass regime: $m_{\gamma} \lesssim 20$ - 30 GeV

Spectrum sharply peaked at low E_R due to velocity distribution. Shape quite sensitive to m_{γ} .

High-mass regime: $m_{\gamma} \gtrsim 20 - 30 \text{ GeV}$

Broad spectrum. Shape not particularly sensitive to m_{γ} .

Form-factor effect

DDM Ensembles and Particle Physics

- Cross-sections depend on effective couplings between the χ_i and nuclei.
- Both <u>elastic and inelastic scattering</u> can in principle contribute significantly to the total SI scattering rate for a DDM ensemble.
- In this talk, I'll focus on elastic scattering: $\chi_i N \rightarrow \chi_i N$.
- For concreteness, I'll focus on the case where the couplings between the χ_i and nucleons scale like:

$$f_{nj} = f_{n0} \left(\frac{m_j}{m_0}\right)^{\beta} \quad \Longrightarrow \quad \sigma_{nj}^{(SI)} = \frac{4\mu_{nj}^2}{\pi} f_{nj}^2$$

 However, note that inelastic scattering has special significance within the DDM framework:

Inelastic Scattering

- Possibility of downscattering $(m_k < m_j)$ as well as upscattering $(m_k > m_j)$ within a DDM ensemble.
- Scattering rates for $\chi_j N \rightarrow \chi_k N$ place lower bounds on rates for decays of the form $\chi_j \rightarrow \chi_k$ + [SM fields] and hence bounds on the lifetimes of the χ_j .

DDM Ensembles and Cosmology

- In contrast to the collider analysis presented in the first half of this talk, direct detection involves <u>a cosmological population</u> of DM particles, and thus aspects of DDM cosmology.
- Recall that the cosmology of a given DDM ensemble is primarily characterized by two parameters: η and Ω_{tot} .
- For concreteness, consider the case where $m_j = m_0 + n^{\delta} \Delta m$ and the present-day abundances Ω_i scale like:

$$\Omega_{\mathrm{tot}} = \sum_{j} \Omega_{j}$$

$$\eta = 1 - \frac{\Omega_{0}}{\Omega_{\mathrm{tot}}}$$

$$\Omega_j = \Omega_0 \left(\frac{m_j}{m_0}\right)^{\alpha}$$

α

-1

 $\eta \sim \mathcal{O}(1)$: the full ensemble contributes significantly to Ω_{tot} .

Recoil-Energy Spectra: DDM

- <u>Distinctive features</u> emerge in the recoil-energy spectra of DDM models, especially when one or more of the χ_i are in the low-mass regime.
- As m_0 increases, more of the χ_j shift to the highmass regime. Spectra increasingly resemble those of traditional DM candidates with $m_\chi \approx m_0$.

Constraining Ensembles:

 Experimental limits constrain DDM models just as they constrain traditional DM models.

DAMA/Na

CoGeNT

CDMS

How well can we distinguish a departure from the standard picture of DM due to the presence of a DDM ensemble on the basis of direct-detection data?

Consider the case in which a *particular* experiment, characterized by certain attributes including...

Target material(s) Fiducial Volume Signal acceptance
Detection method Data-collection time Recoil-energy window

...reports a statistically significant excess in the number of signal events.

The Procedure (much like in our collider analysis):

- Compare the recoil-energy spectrum for a given DDM ensemble to those of traditional DM candidates which yield the <u>same total event rate</u> at a given detector.
- Survey over traditional DM candidates with different m_{χ} and define a χ^2 statistic for each m_{χ} to quantify the degree to which the corrsponding recoilenergy spectrum differs from that associated with the DDM ensemble.
- The minimum χ^2_{\min} of these quantifies the degree to which the DDM model can be distinguished from traditional DM candidates, under standard astrophysical assumptions.

As an example, consider a detector with similar attributes to those anticipated for the next generation of noble-liquid experiments (XENON1T, LUX, PANDA-X, et al.). In particular, we take:

- Liquid-xenon target
- Fiducial volume ~ 1000 kg
- Five live years of operation.
- Energy resolution similar to XENON100
- Acceptance window: 8.4 keV < E_R < 44.6 keV

Background Contribution

- N_e ~ 1000 total signal events observed (consistent with most stringent current limits from XENON100).
- Background dR/dE_R spectrum essentially flat

All χ_n in high-mass regime: little difference between their dR/dE_R contributions

 χ_0 contributes mostly at $E_R < E_R^{min}$, all other χ_i in high-mass regime

All χ_n in high-mass regime: little difference between their dR/dE_R contributions

 χ_0 contributes mostly at $E_R < E_R^{min}$, all other χ_i in high-mass regime

All χ_n in high-mass regime: little difference between their dR/dE_R contributions

 χ_0 in low-mass regime, all χ_j with $j \ge 1$ in high-mass regime: kink in dR/dE_R spectrum

 χ_0 contributes mostly at $E_R < E_R^{min}$, all other χ_i in high-mass regime

All χ_n in high-mass regime: little difference between their dR/dE_R contributions

Only χ_0 contributes perceptible to overall rate: looks like regular low-mass DM

 χ_0 in low-mass regime, all χ_j with $j \ge 1$ in high-mass regime: kink in dR/dE_R spectrum

 χ_0 contributes mostly at $E_R < E_R^{min}$, all other χ_i in high-mass regime

All χ_n in high-mass regime: little difference between their dR/dE_R contributions

Only χ_0 contributes perceptible to overall rate: looks like regular low-mass DM

Multiple χ_j in low-mass region: distinctive dR/dE_R spectra

 χ_0 in low-mass regime, all χ_j with $j \ge 1$ in high-mass regime: kink in dR/dE_R spectrum

The upshot:

In a variety of situations, it should be possible to distinguish characteristic features to which DDM ensembles give rise at the next generation of direct-detection experiments.

- The best prospects are obtained in cases where multiple χ_j are in the low-mass regime: $m_i \leq 30$ GeV.
- A 5σ significance of differentiation is also possible in cases in which only χ_0 is in the low-mass regime and a kink in the spectrum can be resolved.

CAUTION

Discrepancies in recoil-energy spectra from standard expectations can arise due to several other factors as well (complicated halo-velocity distribution, velocity-dependent

interactions, etc.). Care should be taken in interpreting such discrepancies in the context of any particular model.

However,

By comparing/correlating signals from multiple experiments it should be possible to distinguish between a DDM interpretation and many of these alternative possibilities.

Summary

- •Dynamical dark matter (DDM) is a new framework for addressing the dark-matter question in which stability is replaced by a <u>balancing between lifetimes and abundances</u> across a vast <u>ensemble</u> of particles χ_n which collectively account for Ω_{CDM} .
- DDM scenarios give rise to a variety of <u>distinctive experimental</u> <u>signatures</u> which can be used to differentiate DDM ensembles from traditional DM candidates.
- •DDM ensembles can give rise to distinctive features in the **kinematic distributions** of SM fields produced in conjunction with the χ_n via the decays of other heavy particles.
- •DDM ensembles can also leave imprints on the <u>recoil-energy</u> <u>spectra</u> observed at direct-detection experiments.

Other possibilities? Indirect detection?

Indeed, the full range of phenomenological consequences of the DDM framework is just beginning to be explored!

Extra Slides

Dark Matter: The Conventional Wisdom

In most dark-matter models, the dark sector consists of one stable dark-matter candidate χ (or a few such particles). Such a dark-matter candidate must therefore...

- account for essentially the entire dark-matter relic abundance observed by WMAP: $\Omega_\chi \approx \Omega_{\text{CDM}} \approx 0.23$.
- Respect observational limits on the decays of long lived relics (from BBN, CMB data, the diffuse XRB, etc.) which require that χ to be extremely stable: $\tau_{\chi} \gtrsim 10^{26} \ s$ (Age of universe:

Consequences

only $\sim 10^{17} \text{ s}$

- Such "hyperstability" is the **only** way in which a single DM candidate can satisfy the competing constraints on its abundance and lifetime.
- The resulting theory is essentially "frozen in time": Ω_{CDM} changes only due to Hubble expansion, etc.

Dynamical Dark Matter: the Big Picture

Characterizing DDM Ensembles

- The cosmology of DDM models is principally described in terms of three fundamental (<u>time-dependent</u>) quantities:
- Total relic abundance:

$$\Omega_{\text{tot}}(t) = \sum_{i=0}^{N} \Omega_i(t)$$

Distribution of that abundance: (One useful measure)

$$\eta(t) \equiv 1 - rac{\Omega_0}{\Omega_{\mathrm{tot}}} \quad rac{\mathrm{where}}{\Omega_0 \equiv \max{\{\Omega_i\}}}$$

The interpretation:

$$0 \leq \eta \leq 1 \quad \left\{ \begin{array}{l} \eta = 0 & \longrightarrow & \text{One dominant component} \\ \eta > 0 & \text{(standard picture)} \end{array} \right.$$
 Quantifies depature from traditional DM

Not always w = 0!

Effective equation of state:

$$p = w_{\rm eff} \rho_{\rm tot}$$

$$w_{\text{eff}}(t) = -\left(\frac{1}{3H}\frac{d\rho_{\text{tot}}}{dt} + 1\right)$$

Characterizing DDM Ensembles

- Unlike traditional dark-matter candidates, a DDM ensemble has no well-defined mass, decay width, or set of scattering cross-sections.
- The natural parameters which describe such a dark-matter candidate are those which describe the internal structure of the ensemble itself and describe how quantities such as the constituent-particle masses, abundances, decay widths, and cross-sections scale with respect to one another across the ensemble as a whole.

For example:

$$\Omega(\Gamma) = A \left(\Gamma / \Gamma_0 \right)^{\alpha}$$

 $n_{\Gamma}(\Gamma) = B(\Gamma/\Gamma_0)^{\beta}$

Density of states per unit width Γ

The properties of the ensemble are naturally expressed in terms of the coefficients A and B and the scaling exponents α and β .

e.g., if we take:
$$\Omega_i(t) \approx \Omega_i \Theta(\tau_i - t)$$

$$\sum_i \to \int n_\tau(\tau) d\tau \quad \text{ with } \quad n_\tau = \Gamma^2 n_\Gamma$$

We obtain the general result:

$$\frac{d\Omega_{\text{tot}}(t)}{dt} \approx -\sum_{i} \Omega_{i} \delta(\tau_{i} - t) \approx -AB\Gamma_{0}^{2} (\Gamma_{0} t)^{-\alpha - \beta - 2}$$