

Trends in Particle Beam Diagnostics

Dr. Rhodri Jones Head of the CERN Beam Instrumentation Group

Symposium on

Quantum Systems and Research at Accelerators Cockcroft Institute, UK - May 16th 2012

Introduction to Beam Instrumentation

• Beam instrumentation provides "eyes" for machine operators

- The instruments that observe beam behaviour
- An accelerator can never be better than the instruments measuring its performance!

• What does work in beam instrumentation entail?

- Design, construction & operation of instruments to observe particle beams
- R&D to innovate or improve existing techniques to fulfill new requirements
- A combination of many disciplines
 - Applied & Accelerator Physics and a lot of Mechanical, Electronic & Software Engineering
- A fascinating field of work!

• What are the main beam parameters measured?

- Beam Position to control location of the beam in the accelerator
- Beam Intensity to measure operational efficiency
- Beam Loss to ensure safe operation
- Transverse Beam profiles

to optimise operation

Longitudinal Beam profiles

Trends in Accelerators

• Bigger, Faster, Better!

- High energy machines for particle physics
 - LHC, HL-LHC, HE-LHC (CERN)
 - CLIC/ILC (R&D)
- High current machines
 - Neutron sources material science
 - SNS (US), ESS (Sweden), CSNS (China), IFMIF (Japan), ...
 - Neutrino Production
 - T2K (JPARC, Japan), NuMI/Nova (FNAL, US), CNGS (CERN), Project-X (FNAL, US), ...
- High Brightness machines
 - X-ray Free Electron Lasers probing complex, ultra-small structures
 - LCLS (SLAC, US), European XFEL (DESY, DE), ...

• Compact or Exotic!

- Rare radioactive isotope machines
 - FAIR (GSI, DE), HIE-ISOLDE (CERN)
- Anti-matter machines
 - ELENA (CERN), FAIR (GSI, DE)
- Medical proton/ion therapy machines

- Unprecedented request for precision
 - Positioning down to well below the micron level
- Treatment of increasingly more data
 - Bunch by bunch measurements for all parameters
- Dealing with high beam powers
 - Non-invasive measurement techniques
 - Robust and reliable machine protection systems
- Dealing with the ultra-fast
 - Measurements on the femto-second timescale
- Dealing with the ultra-low
 - Measurement of very small beam currents

The Quest for Unprecedented Precision

Beam Position Monitoring – The Challenges

Typically one of the largest BI systems

- LHC has 1100 BPMs - CLIC drive beam requires 40000! This implies:

- Precision engineering at low cost
- Simple, robust, yet very highly performing electronics
 - Digitise as soon as possible (now doable with advances in ADCs & digital treatment systems)
 - Radiation Tolerant (improves S/N, minimises expensive cabling BUT needs significant testing time)
- XFEL's and Linear Colliders increasingly asking for very high resolution
 - Well below 1µm for single pass

Trends in Particle Beam Diagnostics - Dr. Rhodri Jones (CERN)

Improving the Precision for Next Generation Accelerators

- Standard BPMs give intensity signals need to subtract them to obtain a difference which is proportional to position
 - Difficult to do electronically without some of the intensity information leaking through
 - When looking for small differences this leakage can dominate the measurement
- Solution cavity BPMs allowing sub micron resolution
 - Design the detector in such a way as to only collect only the difference signal
 - Dipole Mode TM₁₁ proportional to position & shifted in frequency with respect to monopole mode

Frequency Domain

Trends in Particle Beam Diagnostics - Dr. Rhodri Jones (CERN)

Today's State of the Art BPMs

Maximising the Available Data

Maximising the Available Data - Example

• LHC Longitudinal Density Monitor

- Aims:
 - Profile of the whole LHC ring with 50ps resolution
 - High dynamic range for ghost charge measurement
- Method:
 - Single photon counting with Synchrotron light
 - Avalanche photodiode detector
 - 50ps resolution TDC

Longitudinal Bunch Shape

LDM On-line Correction

LDM Results

• Results

- Able to profile the whole ring within a matter of minutes
- Critical input for accurate luminosity calibration of the experiments

Trends in Particle Beam Diagnostics - Dr. Rhodri Jones (CERN)

Dealing with high beam powers

Non-invasive measurement techniques

Dealing with High Beam Power - The Issues

Traditional invasive diagnostics no longer suitable

- Materials do not withstand energy deposition
 - Burning of holes or breaking of wires
- Use of superconducting RF structures
 - Risk of contamination on breakage or sputtering of the intercepted material

Measuring the Size of High Power Beams

• Synchrotron Light Diagnostics

- Only for electron & very high energy proton/ion machines (LHC)
 - Difficult to separate the light from the beam for linear accelerators
- Difficult to get absolute calibration
 - Image correction factors typically bigger than the beam size!
- Additional challenges lie in fast cameras & signal treatment chains for bunch by bunch measurement

Measuring the Size of Intense Bunches

Non-Invasive Beam Size Measurement

Non-Invasive Beam Size Measurement

CÉRN

Non-Invasive Beam Size Measurement

Residual Gas Ionisation Some 10 times more sensitive than BIF More complicated to build Corrector 1 MCP, - Phosphor High voltage network Guiding magnetic field Тор Image broadening due to space charge -5kV Ageing of detectors an issue Comparison of BIF and IPM Profiles in Different Gase p = 1E-5 mbar0.6 0.0 'n 0.5 Intensity Beam 0.5 Measured Normalized 0.5 Kr Ionization 0.5 products Bottom 0.0 Xe Relevant +5kV 0,5 Ion beam ionization area Corrector 2 15 20 30 35 width [mm]

Courtesy of M. Schwickert

Dealing with high beam powers

Robust and Reliable Machine Protection Systems

Beam Loss Monitors – New Materials

Diamond Detectors

- Fast & sensitive
- Used in LHC to distinguish bunch by bunch losses
- Investigations now ongoing to see if they can work in cryogenic conditions

Courtesy of E. Griesmayer

Dealing with the ultra-fast

Measurements on the femto-second timescale

Ultra-Short Bunch Length Diagnostics

Non Destructive – Electro-Optic Sampling

Trends in Particle Beam Diagnostics - Dr. Rhodri Jones (CERN)

Dealing with the ultra-low

Measurement of very small beam currents

Measuring very low Intensity Beams

Measuring rare ions and antiprotons

- Currents well below 1µA resolution of traditional Direct Current Beam Transformers
- Superconducting QUantum Interference Devices
 - Can overcome the limits of conventional systems
 - Both low and high temperature versions have been developed

Challenges

- Shielding the detector from stray fields
 - Earth's magnetic field ~ 50μT
 - Field produced by 100 nA beam at 10 cm $^{\sim}$ 0.2 pT !
- Making the system compact

Cryogenic Current Comparator (CCC)

- Charged particle beam induces screening currents
- Toroidal pick-up coil of niobium with ferromagnetic core is used to measure magnetic field
- Signal from coil is fed through a superconducting transformer for impedance matching to the input coil of the readout DC SQUID.

Conclusion

- Particle Beam Diagnostic systems are continually evolving to meet the requirements of
 - ever more powerful and sophisticated accelerators
 - ever more demanding specifications

Many synergies between the developments required for all types of new accelerator facilities

- Ideal subject for collaboration on an international level
- Was already underway between the major accelerator laboratories worldwide
- Now strengthened and extended to universities and industry via European Networks

