The AEGIS Experiment: Measuring the Free Fall of Antihydrogen

Alban Kellerbauer

Max Planck Institute for Nuclear Physics, Heidelberg

for the AEGIS Collaboration

"If there is negative electricity, why not negative gold, as yellow and valuable as our own, [...] different only in so far that if brought down to us it would rise up into space with an acceleration of 981 [cm/s²]."

Arthur Schuster, Nature 58 (1898) 367

AEGIS

Antimatter Experiment: Gravity, Interferometry, Spectroscopy

- Main goal: First direct measurement of the effect of gravity on antimatter Measurement of g with 1% precision* on antihydrogen (10⁵ \overline{H})
- Requirements / challenges:
 - Production of a bunched cold beam of antihydrogen (100 mK)
 - Measurement of beam deflection by interferometry (10 μ m drop over 1 m)

* Higher precision possible after future upgrade

Outline

- Motivation
- AEGIS principle and main components
- Experimental sequence
- Status & outlook

Where is the antimatter?

• Baryon asymmetry:

 \Rightarrow Tiny deviation is responsible for the existence of all baryonic matter!

- Possible explanations:
 - 1. Difference in matter/antimatter properties (CP or CPT violation)
 - 2. Anomalous gravitation, segregation in different parts of the universe

Antimatter gravity tests

- The effect of gravity on ordinary matter has been studied extensively
- Antimatter gravity has to this day never been investigated
 - Charged subatomic antiparticles are sensitive to electromagnetic stray fields
 - Neutral antimatter was previously not available
- Since 2002 copious amount of neutral antiatoms have been available

[M. Amoretti *et al.*, Nature **419** (2002) 456; G. Gabrielse *et al.*, Phys. Rev. Lett. **89** (2002) 213401]

• Test of the Weak equivalence principle:

"The trajectory of a falling test particle is independent of its composition."

AEGIS principle

• AEGIS principle sketch:

- 1) Antiproton capture & cooling
- 2) Positron production
- 3) Positronium conversion
- 4) Positronium excitation

- 5) Antihydrogen recombination
- 6) Antihydrogen beam formation
- 7) Gravity measurement
- 8) Data analysis

Antiproton Decelerator at CERN

- $10^7 \bar{p}$ produced every ≈ 90 s
- Deceleration $p = 3.5 \text{ GeV/c} \rightarrow 100 \text{ MeV/c}$
- Fast extraction
 (200-ns bunches)

AEGIS at the AD

AEGIS zone at the AD

Status prior to installation of main components

AEGIS overview sketch

1) Antiproton capture and cooling

- Energy reduced by 50-µm Al degrader foil
- Trapping sequence:
 - Trap is prepared with plasma of 10⁸ cold electrons
 - 2. Small fraction of antiprotons with E < 5 keV is reflected
 - 3. Axial potential on entrance side is raised to trap \bar{p}
 - 4. Antiprotons are sympathetically cooled by electrons
- Transfer to 1-T trap, further cooling to 100 mK by a dilution refrigerator

> 10⁴ antiprotons @ 100 mK

2) Positron production & accumulation

- Trapping & cooling sequence:
 - Confinement in 0.14-T trap
 - Deceleration in N buffer gas
 - Accumulation in axial electricfield minimum

• Production from β^+ emitter:

$$^{22}Na \rightarrow ^{22}Ne + e^+ + V_e \approx 1 \text{ GBq source}$$

• Moderation to 50 eV in solid neon

$\approx 10^8$ positrons every 200 s

[M. Amoretti et al., Nucl. Instrum. Methods A 518 (2004) 679]

A. Kellerbauer · Cockcroft Institute · 16 May 2012

3) Positronium production

- Ps formation in nanoporous insulators:
 - Implanted positrons scatter off atoms and electrons, slow to eV in few ns
 - Positronium forms by capture of bound electrons or free electron from collisions
 - Positronium accumulates in voids due to reduced dielectric strength
 - If pores are fully interconnected, (almost) all ortho-Ps diffuses out of the film
- ortho-Ps yield and velocity distribution depend on
 - Converter material
 - Implantation depth (energy)
 - Target temperature
 - ightarrow up to 30% at 50 K

High-efficiency positronium converter

4) Positronium excitation

- Cross-section of Ps charge exchange reaction is enhanced for large n: $\sigma \approx a_0 n^4$
- Two-step excitation $n = 3 \rightarrow \text{Rydberg}$

Excitation efficiency $\approx 30\%$

- Requirements
 - Bandwidth matched to broadened Rydberg levels
 - Sufficient power to excite Ps cloud within few ns
 - Beam tailored to geometry of expanding cloud
- AEGIS laser system:

5) Antihydrogen recombination

• Charge exchange reaction:

 $\mathsf{Ps}^* + \overline{p} \to \overline{\mathsf{H}}^* + e^-$

• Principle demonstrated by ATRAP $Cs^* \rightarrow Ps^* \rightarrow \overline{H}^*$

[C. H. Storry et al., Phys. Rev. Lett. 93 (2004) 263401]

- Advantages:
 - Large cross-section:

$$\sigma \approx a_0 n^4$$

- Pulsed production
- Narrow and well-defined H
 n-state distribution

 Antiproton temperature essentially determines antihydrogen temperature:

> At $T(\bar{p}) = 100 \text{ mK}$, $n_{\text{Ps}} = 35$ $\Rightarrow T(\overline{H}) \approx 120 \text{ mK}$

$$\Rightarrow$$
 cold / ultracold \overline{H}

6) Antihydrogen beam formation

• Electric field gradients exert force on electric dipole moments of neutral atoms:

(max. induced dipole)

- \Rightarrow Rydberg atoms are very sensitive to inhomogeneous electric fields
- Stark deceleration of hydrogen demonstrated (ETH group):

[E. Vliegen & F. Merkt, J. Phys. B 39 (2006) L241]

- *n* = 22,23,24
- Accelerations of up to 2×10^8 m/s² achieved
- Hydrogen beam at 700 m/s can be stopped in 5 μ s over only 1.8 mm

7) Gravity measurement

• Measuring forces:

Vertical deflection:

$$\delta x \approx -10 \ \mu m$$

$$\Delta x \approx 5.8$$
 cm

(Antihydrogen beam at 100 mK, accelerated to 500 ms⁻¹)

• Improve transmission by increasing number of slits:

 $N \times N/2$

7) Gravity measurement

• Moiré deflectometer:

Position-sensitive detector enhances transmission by factor ≈ 3

- Classical counterpart of Mach-Zehnder interferometer
- Two gratings create fringe pattern on third grating
- Successfully used for gravity measurement on Ar atoms, $\sigma(g)/g = 2 \times 10^{-4}$

[M. K. Oberthaler et al., Phys. Rev. A 54 (1996) 3165]

7) Gravity measurement

8) Data analysis

8) Data analysis

• Extraction of acceleration g:

3
 3
 4
 4
 5
 4
 5
 4
 5
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7

Measurement of *g* to 1%:

- ≈ 10⁵ \overline{H} atoms at 100 mK
- 2 weeks of beam time
- 1 Hz event rate

$$\delta x = -g T^2$$

Status of AEGIS apparatus

Completed components:

Positron source, rare-gas moderator, trap and accumulator

AD beam line and diagnostics

5-T magnet and trap

Laser system

1-T magnet

- Components under design/construction:
 - Dilution cryostat: design completed, delivery 2012
 - Moiré deflectometer: prototype being tested in Heidelberg
 - Position-sensitive detector: tests with prototype by summer 2012
 - Antihydrogen detector: design completed, assembly by summer 2012
 - 1-T Penning traps: being designed

Conclusions & outlook

- The effect of gravity on antimatter has never been measured
- Depending on the chosen model, effect could be nil or dramatic
- The AEGIS experiment intends to measure *g* of antihydrogen to (initially) 1% precision

Done

• Construction of AEGIS apparatus ongoing

Done

- Schedule:
 - 2012: \bar{p} capture, cooling and transfer; e^+ capture, accumulation and transfer; Ps formation and excitation; \overline{H} formation and acceleration

Done

- 2014: First antimatter gravity experiment

AEGIS Collaboration

