Jet suppression in PHENIX

Dennis V. Perepelitsa Columbia University for the PHENIX Collaboration

 $8^{\rm th}$ International Workshop on High- $p_{\rm T}$ Physics at the LHC Central China Normal University, Wuhan, China

22 October 2012

PHENIX Jet Suppression (1/23)

D.V. Perepelitsa

Outlin

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

d+Au collisions

Centrality Results

Outline

- 1. Benchmarking jet reconstruction
 - \Rightarrow Motivation
 - \Rightarrow Gaussian filter algorithm
 - \Rightarrow Jets in *p*+*p* collisions

- 2. Exploring hot nuclear matter
 - \Rightarrow Suppressed jets in Cu+Cu collisions

- 3. Understanding CNM baselines
 - \Rightarrow **New results** from RHIC 2008
 - \Rightarrow Strong centrality dependence in *d*+Au collisions

PHENIX Jet Suppression (2/23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

d+Au collisions Centrality

Results

Why jets ... ?

PHENIX Jet Suppression (3/23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions Fake jet rejection

Centrality

Results

Outlook

 Probing heavy ion collisions at RHIC and the LHC with reconstructed jets:

 \Rightarrow Reconstruct full fragmenting parton kinematics at LO.

 \Rightarrow Sensitive probe of suppression/quenching effects.

Why jets at RHIC?

- Complementary set of measurements from two high statistics colliders!
- Can measure jet modification at:
 - \Rightarrow lower energies due to smaller underlying event
 - \Rightarrow different x and Q^2 (different mixture of quark and gluon jets)
 - \Rightarrow different temperature (lever arm for theory)
- Versatility of collision species at RHIC:
 - \Rightarrow ability to vary system size, energy density, geometry
 - \Rightarrow control against cold nuclear matter effects
 - \Rightarrow Cu+Au, U+U from RHIC 2012 run

PHENIX Jet Suppression (4/23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

ake jet rejection Results

d+Au collisior Centrality Results

PHENIX detector

- Drift Chamber (DC), Pad Chambers (PC) and Ring Imaging Čerenkov Detector (RICH) measure charged hadrons and electrons
- Electromagnetic Calorimeter (EMCal) clusters photons, π⁰'s, (some) neutral hadrons
- ► EMCal/RICH Trigger (ERT) and high PHENIX DAQ rate allow complementary Minimum Bias and high-*p*_T triggered datasets
- Beam-beam counters (BBC) provide MinBias trigger, centrality

Gaussian filter algorithm

 Seedless, cone-like algorithm with a Gaussian angular weighting (nucl-ex/0806.1499)

$$p_{\mathrm{T}}^{\mathrm{jet}} \equiv \max\left\{\int\int d\eta' d\phi' p_{\mathrm{T}}\left(\eta',\phi'
ight) e^{-(\Delta\eta^2+\Delta\phi^2)/2\sigma^2}
ight\}$$

Developed for use in heavy ion collisions.

 \Rightarrow Focuses on the energetic core of the jet, optimizing S/B

- \Rightarrow Stabilizes the jet axis in the presence of background
- Most results cross-checked with anti-k_T

PHENIX Jet Suppression (6/ 23)

D.V. Perepelitsa

Outline

Jets at PHEN Motivation Detector Gaussian Filter Results

u+Cu collisions Fake jet rejection Results

d+Au collisions Centrality Results

Understanding the energy scale

▶ $14 imes 10^6$ PYTHIA Tune A 2 ightarrow 2 QCD events, $\sqrt{Q^2} = 0.5$ -64 GeV

- \Rightarrow Cross-checks with HERWIG, other PYTHIA tunes
- ⇒ PHENIX energy "resolution" driven by: tracking inefficiency, loss of n, K_L^0 neutral energy, edge of acceptance effects
- Embedding into real heavy ion background.
- Hadronization correction to NLO calculation in progress
 - \Rightarrow will allow proper comparison to data

PHENIX Jet Suppression (7/23)

D.V. Perepelitsa

Outline

Jets at PHENIX Motivation

Gaussian Filter Results

Cu+Cu collisions Fake jet rejection Results

d+Au collision Centrality Results

p+*p*: jet spectrum

• p+p, $\sqrt{s} = 200$ GeV, RHIC 2005

Demonstrates Gaussian filter reconstruction in PHENIX:

- \Rightarrow comparison with NLO pQCD across ten orders of magnitude
- \Rightarrow residual differences from jet definition
- Analysis being finalized, moving towards publication

PHENIX Jet Suppression (8/ 23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions Fake jet rejection Results

d+Au collisions Centrality Results

p+p: jet fragmentation

PHENIX Jet Suppression (9/ 23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

u+Cu collisions Take jet rejection Results

d+Au collisions Centrality

Outlook

7

• Fragmentation function $(z = p_{||}^{\text{particle}} / p^{\text{jet}})$ measurement:

- ⇒ required development of n-dimensional generalization of SVD unfolding in GURU
- \Rightarrow another proof of principle for jet physics

On to heavy ion physics

- Benchmarked the Gaussian filter in p+p collisions
 - \Rightarrow Cu+Cu collisions, $\sqrt{s_{\rm NN}} = 200$ GeV, RHIC 2005
 - \Rightarrow Measure jet suppression in heavy ions:

$${\sf R}_{
m AA} = rac{1}{{\cal N}_{
m evt}^{AA}} rac{d{\cal N}^{AA}}{d{m p}_{
m T}}/\left\langle {{\cal T}_{
m AB}}
ight
angle rac{d{\sigma}^{
m p+
m p}}{d{m p}_{
m T}}$$

Need a few more jet reconstruction techniques...

PHENIX Jet Suppression (10/ 23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

d+Au collisions Centrality Results

Rejecting fake jets

Separate low-p_T jets from UE fluctuations on a jet by jet basis

- \Rightarrow trade reconstruction efficiency for sample purity
- Similar to "angularly-weighted" p_T cut
 - $\Rightarrow\,$ rewards jets with a tight core of energy, punishes diffuse jets
 - \Rightarrow efficient saturation with reconstructed $ho_{
 m T}$
 - \Rightarrow data-driven approaches set threshold

PHENIX Jet Suppression (11/23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

d+Au collisions

Centrality Results

Cu+Cu: jet spectrum

- *p*_T-feeding from underlying event
 - $\Rightarrow\,$ subtraction of centrality- and z-vertex parameterized average background
- *p*_T-smearing from UE fluctuations
 - \Rightarrow evaluated through embedding p+p jets into Cu+Cu minimum bias events
- results shown here unfolded to p+p-equivalent detector scale

PHENIX Jet Suppression (12/23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions Fake jet rejection

Results

d+Au collisions Centrality Results

Cu+Cu: jet suppression...

- Suppressed reconstructed jet R_{AA}
 - \Rightarrow over a wide $p_{\rm T}$ range
 - \Rightarrow increasing suppression in more central collisions
- Comparable to single hadron suppression at high-p_T
 - \Rightarrow qualitatively similar to LHC single jet suppression results

PHENIX Jet Suppression (13/ 23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

d+Au collisions Centrality Results

Cu+Cu: ... without de-correlation

Centrality	$\Delta \varphi \approx \pi$ width σ
0-20%	0.223 ± 0.017
20-40%	0.231 ± 0.016
40-60%	0.260 ± 0.059
60-80%	0.253 ± 0.055

PHENIX Jet Suppression (14/ 23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

H+Au collisions

Results

- Reconstructed di-jet $\Delta \phi$ distributions unmodified
 - \Rightarrow no angular de-correlation in central collisions!
 - \Rightarrow upper limits on cold/hot nuclear matter $k_{\rm T}$ -broadening
- Qualitatively similar to LHC dijet results

Cold nuclear matter effects in d+Au

 p/d+A collisions establish a baseline for A+A:

- \Rightarrow confirm that suppression in A+A is a final state effect
- \Rightarrow probe centrality dependence of nPDF's
- \Rightarrow test pQCD & factorization at high x

PHENIX π^0 result from 2003 data:

- \Rightarrow weak centrality dependence
- \Rightarrow low statistics at high- p_{T}

PHENIX Jet Suppression (15/ 23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

d+Au collisions

Results

Outlool

d+Au centrality determination

cent.	$\langle N_{\rm coll} \rangle$	bias corr.
0-20%	15.1	-6%
20-40%	10.2	+0%
40-60%	6.6	+3%
60-88%	3.2	+3%

- \blacktriangleright Charge sum in Au-going BBC, 3.1 $<\eta<$ 4.9, used to classify centrality
- Glauber MC + negative binomial distribution description of signal

 \Rightarrow see 88% of the inelastic *d*+Au cross section

- Small correlation between central arm particle production and BBC charge
 - \Rightarrow calibrated in p+p collisions
 - \Rightarrow additional correction to yield

PHENIX Jet Suppression (16/ 23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

d+Au collisions

Centrality Results

d+Au: jet spectrum

• p+p and d+Au, $\sqrt{s_{\rm NN}} = 200$ GeV, RHIC 2008

 \Rightarrow 30× increase from RHIC 2003 data

Jets from 9 to 40 GeV/c at the p-p-equivalent detector scale

- \Rightarrow bin-by-bin unfolding of p_{T} -feeding from mild $d+\mathrm{Au}$ UE
- \Rightarrow small residual fake rate (< 5%) below < 12 GeV/c

PHENIX Jet Suppression (17/ 23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions Fake jet rejection

```
Results
```

```
Centrality
Results
```

d+Au: jet R_{dA}

- $R_{
 m dA}=1$ within errors at low- $p_{
 m T}$
- Mild suppression in central events at high-p_T
- Moderate enhancement in peripheral events at high-p_T
 - ⇒ unexpected result!

PHENIX Jet Suppression (18/ 23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

d+Au collision Centrality

Results

d+Au: confirmation from π^0 s, η s

Reconstructed from cluster pairs in π^0 , η mass windows

\triangleright Consistent rise in peripheral R_{dA} in jets and hadrons

Different systematics, different p+p reference \Rightarrow

PHENIX Jet Suppression (19/23)

D.V. Perepelitsa

Results

d+Au: jet R_{CP}

Another way to look at the central/peripheral difference:

- Significantly reduced systematics
- Cleaner measurement of relative centrality dependence

 \Rightarrow evolves in $p_{
m T}$ to $R_{
m CP}=$ 0.6 asymptote

PHENIX Jet Suppression (20/ 23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

d+Au collisions Centrality Results

d+Au: single hadron $R_{\rm CP}$ comparison

• Scale single hadron $p_{\rm T}$ by $1/\langle z \rangle$ using empirical $\langle z \rangle = 0.7$:

PHENIX

Jet Suppression (21/23) D.V. Perepelitsa

Excellent agreement in shape between jets and hadrons

d+Au: what does it all mean?

- Small suppression in central d+Au
 - \Rightarrow are nPDF effects, initial state E-loss enough?
- Moderate enhancement in peripheral d+Au
 - \Rightarrow extreme centrality bias in high- p_{T} jet events?
 - \Rightarrow not understood aspect of *d*+Au geometry?
 - ⇒ something new?
- Strong centrality dependence at high-p_T
 - \Rightarrow challenging to simultaneously explain both!
 - \Rightarrow invites comparison to *p*+A at LHC (and RHIC)

PHENIX Jet Suppression (22/23)

D.V. Perepelitsa

Outlin

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

d+Au collisions

Centrality Results

Outlool

Outlook

- Jet measurements at PHENIX delivering interesting physics:
 - \Rightarrow consistent algorithm across multiple collision systems
 - \Rightarrow benchmarked in *p*+*p*, exploring hot and cold nuclear matter
- Surprising, robust centrality dependence in d+Au:
 - \Rightarrow implications for centrality, *p*+A, CNM
- The future of PHENIX jet measurements:

PHENIX Jet Suppression (23/23)

D.V. Perepelitsa

Outline

Jets at PHENIX

Motivation Detector Gaussian Filter Results

Cu+Cu collisions

Fake jet rejection Results

d+Au collisions

Centrality Results