

8th International Workshop on High p₊ Physics at LHC 2012

21-24 October 2012, Central China Normal University, Wuhan, China

Identified charged hadron production at high p_T with the ALICE experiment

Xian-Guo Lu (卢显国) for the ALICE Collaboration

University of Heidelberg

Introduction

Our story starts with the charged particle $R_{_{A\!A}}$ measured by ALICE ...

$$R_{\mathrm{AA}}(p_{\mathrm{T}}) = rac{\mathrm{d}^{2}N_{\mathrm{ch}}^{\mathrm{AA}}/\mathrm{d}\boldsymbol{\eta}\,\mathrm{d}p_{\mathrm{T}}}{\langle T_{\mathrm{AA}}
angle \mathrm{d}^{2}\boldsymbol{\sigma}_{ch}^{\mathrm{pp}}/\mathrm{d}\boldsymbol{\eta}\,\mathrm{d}p_{\mathrm{T}}}$$

- Charged particle yield in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, normalized to the pp reference at same coll. energy
- > At high p_{τ} (> 7GeV/c)
 - p_T dependence: almost flat in peripheral, pronounced dip followed by significant rise in central coll.

 - Info about parton energy loss, medium density ...

Introduction

The story continues as ...

ALICE is able to identify the charged particle types and study $(\pi^++\pi^-)$, (K^++K^-) , (proton+anti-proton) production individually.

Info about particle production mechanism, partonic energy loss, jet fragmentation ...

Our measurement

$$\frac{\mathrm{d}^2 N_i}{\mathrm{d}y \mathrm{d}p_T} = \frac{\mathrm{d}^2 N_{\mathrm{ch}}}{\mathrm{d}\eta \mathrm{d}p_T} \frac{\Delta \eta}{\Delta y} \frac{N_i^{\mathrm{uncor.}}}{N_{\mathrm{ch}}^{\mathrm{uncor.}}} \frac{\epsilon_{\mathrm{ch}}}{\epsilon_i} \quad \text{(i=\pi, K, p)}$$

$$(2) \quad (1)$$

Extract particle fractions (π /K/p) in p_T bins, corrected for efficiency (1) Multiply by charged particle spectra (2) used in charged particle R_{AA} measurement Jacobian d η /dy is taken into account.

Results: $p_{_{\rm T}}$ spectra, ratios between particle types and $R_{_{{\rm AA}}}$ for each type

2010 Pb-Pb data sample, 12M minimum-bias events. Much more to come for 2011 data sample!

ALICE and its Central Detectors:

Inner Tracking System (ITS)
Time Projection Chamber (TPC)

Time-of-Flight (TOF)

TPC-ITS combined tracking

 $p_{_{\rm T}}$ resolution ~ 10% at 50 GeV/c For new ongoing reconstruction production, ~ 5% at 50 GeV/c due to improved TPC-ITS matching

Small multiplicity dependence (around 10%)

Verified using cosmic tracks and K_s⁰ invariant mass distribution
→ relative systematic uncertainty: 20%

Particle identification (PID) with TPC, ITS, TOF and HMPID in this analysis

TOF, HMPID (cherenkov detector) as independent reference detectors to provide clean $\pi/K/p$ sample

Measurement of $\pi/K/p$ fractions with TPC dE/dx signal

Analysis oriented TPC calibration using reference detectors and $\Lambda,\,{\rm K_S}^0$ decay products.

Models of <dE/dx> and dE/dx resolution fit (+corrections) with pre-identified particle. Deviation of <dE/dx> within 0.5 %.

Fractions obtained using 4-Gaussian (including electrons) fits with fixed mean and width.

In central Pb-Pb collisions proton is enhanced in the intermediate p_{τ} region.

pp

Pb-Pb peripheral (60-80 %)

Pb-Pb central (0-5%)

22/10/2012

Identified particle spectra

$$\frac{\mathrm{d}^2 N_i}{\mathrm{d}y \mathrm{d}p_T} = \frac{\mathrm{d}^2 N_\mathrm{ch}}{\mathrm{d}\eta \mathrm{d}p_T} \frac{\Delta \eta}{\Delta y} \frac{N_i^\mathrm{uncor.}}{N_\mathrm{ch}^\mathrm{uncor.}} \frac{\epsilon_\mathrm{ch}}{\epsilon_i}$$

Low p_T spectra from other independent analysis (arXiv:1208.1974 [hep-ex]) using also ITS. π spectra $p_T > 2$ GeV/c, K, p sepctra $p_T > 3$ GeV/c obtained with method described here.

K/π , p/π ratio in pp compared to theory

- > No obvious energy dependence seen in data.
- > Pythia Perugia2011 predicts well p/ π ratio at low and high pT, but under-predicts at intermediate p_{τ}.
- NLO calculation does not predict the data.

 p_{\perp} (GeV/c)

K/π , p/π ratio in Pb-Pb compared to theory

EPOS: Klaus Werner, arXiv:1204.1394, arXiv:1205.3379.

AMPT: Jun Xu and Che Ming Ko, Phys. Rev. C 83, 034904 (2011).

Recombination: R. J. Fries et al., Phys. Rev. Lett. 90, 202303 (2003) and private communication (one of the models explaining the baryon anomaly at RHIC)

Pion R_{AA} compared to charged particle R_{AA}

- Compatible at high p_T

Kaon R_{AA} compared to charged particle R_{AA}

- > stronger suppression at intermediate p_{T} (but less suppressed than pions)
- Compatible at high p_T

(Anti-)Proton $R_{_{\mathrm{AA}}}$ compared to charged particle $R_{_{\mathrm{AA}}}$

- \rightarrow Weaker suppression at intermediate $p_{_{\rm T}}$
- Compatible at high p_T

Direct comparison of $\pi/K/p$ R_{AA}

- > At high p_{τ} , the suppression of yields are compatible for $\pi/K/p$
 - → no evidence of different energy loss for the partonic sources of $(\pi^+ + \pi^-)$, $(K^+ + K^-)$, and (proton+anti-proton)
 - → suggest that fragmentation is not modified by the medium (within errors)
- > Both meson and baryon are strongly suppressed, compatible with charged particle results.

Summary

- Measurement of charged $\pi/K/p$ production up to 20 GeV/c at ALICE with centrality dependence.
- > No evolution of p/π and K/π ratio with centralities at high p_{τ} .
 - → fragmentation is not modified by medium (within errors)
- \rightarrow $\pi/K/p$ R_{AA} are compatible with charged particle R_{AA}, all strongly suppressed at high p_T.
 - → no evidence (within errors) of different energy loss for the partonic sources of $(\pi^++\pi^-)$, (K^++K^-) , and (proton+anti-proton)
 - → suggests that fragmentation is not modified by the medium (within errors)

BACKUP

END