High pT measurements by ATLAS in Pb+Pb Collisions at the LHC

Brian. A Cole, Columbia University October 21, 2012

Introduction

The Big Picture

 We know that strong interactions are well described by the QCD Lagrangian:

 $L_{QCD}=-rac{1}{4}F^a_{\mu
u}F^{\mu
u}_a-\sum_nar{\psi}_n\left(\partial\!\!\!/-ig\gamma^\mu A^a_\mu t_a-m_n
ight)\overline{\psi}_n$

Perturbative limit well studied

- Nuclear collisions provide a laboratory for studying QCD outside the large Q² regime:
 - Deconfined matter (quark gluon plasma)
 - ⇒"Emergent" physics not manifest in L_{QCD}
 - \Rightarrow Strong coupling \Rightarrow AdS/QCD (?)
 - High gluon field strength, saturation
 - ⇒ Unitarity in fundamental field theory

In this talk:

⇒Using large Q² processes to probe

Hard Scattering in p-p Collisions

From Collins, Soper, Sterman Phys. Lett. B438:184-192, 1998

$$\sigma_{AB} = \sum_{ab} \int dx_a dx_b \,\phi_{a/A}(x_a,\mu^2) \,\phi_{b/B}(x_b,\mu^2) \,\hat{\sigma}_{ab} \left(\frac{Q^2}{x_a x_b s},\frac{Q}{\mu},\alpha_s(\mu)\right) \,\left(1 + \mathcal{O}\left(\frac{1}{Q^P}\right)\right)$$

• Factorization: separation of σ into – Short-distance physics: σ_{ab} – Long-distance physics: ϕ 's

Hard Scattering & parton showers

Initial and final state parton showers

 Angular ordered (initial and) final state showers as by-product of virtuality evolution.

"Baseline": jets in p-p

Leading jet : p_T= 670 GeV, η = 1.9, φ = -0.5
 Sub-leading jet: p_T = 610 GeV, η = -1.6, φ = 2.8

Jet probes of the quark gluon plasma

 Use jets from hard scattering processes to directly probe the quark gluon plasma (QGP)

Key experimental question:

⇒How do parton showers in quark gluon plasma differ from those in vacuum?

 Use vector bosons -- for which the QGP is transparent -- to calibrate hard scattering rates in Pb+Pb collisions.

Jet probes of the quark gluon plasma (2)

Jet - QGP interactions schematically

From Quark Matter 2011 talk by B. Muller

A partonic jet shower in medium

<u>Leading parton:</u> Transfers energy to medium by elastic collisions Radiates gluons due to scatterings in the medium (<u>inside</u> and <u>outside</u> jet cone)

Radiated gluons (vacuum & medium-induced): Transfer energy to medium by elastic collisions Be kicked out of the jet cone by multiple scatterings after emission

•QGP can modify jets in multiple ways:

- 1. Collisional energy loss (analog of Bethe-Bloch)
- 2. Radiative energy loss (enhanced splitting)
- 3. Broadening of parton shower
 - \Rightarrow 2 & 3 will depend on jet radius

Centrality, geometry, and hard scattering rates

Pb+Pb (transverse) energy measurement

ATLAS: Pb+Pb centrality

Centrality	$\langle N_{\rm part} \rangle$	$\langle N_{ m coll} angle$
0-10%	356 ± 2	1500 ± 115
10 - 20%	261 ± 4	923 ± 68
20-30%	186 ± 4	559 ± 41
30-40%	129 ± 4	322 ± 24
40-50%	86 ± 4	173 ± 14
50-60%	53 ± 3	85 ± 8
$\boxed{60-80\%}$	23 ± 2	27 ± 4

• Pb+Pb collision centrality characterized by ΣE_T in forward calorimeters (3.2 < $|\eta|$ < 4.9).

- Also quantified using number of participants (N_{part})

 – Pb+Pb partonic luminosity expressed in terms of "number of nucleon-nucleon collisions" (N_{coll}) or T_{AA}

⇒Calculated using standard Glauber Monte Carlo.

Prompt photon production

 Transverse segmentation of ATLAS EM calorimeter allows rejection of photons from π⁰, η decay
 Also use isolation cuts
 ⇒Purity > 70%

Prompt photon production (2)

• Photon spectra over $40 < p_T < 200 \text{ GeV}$

- -well described by JETPHOX multiplied by TAA
- -Yield / T_{AA} ~ independent of centrality

⇒Hard QCD photon production varies with Pb+Pb centrality as expected

Z production

Z→e⁺e⁻ event display

<complex-block>

- Measured in both electron and muon channels

 different efficiency
 - -consistent results

Z production (2)

 Minimum-bias Pb+Pb Z pT and rapidity distributions well-described by PYTHIA

Z production (3)

Z yield / N_{coll} independent of centrality.
 R_{PC} (peripheral/central) ~ 1

 though possible reduction of low-p_T Z yield in more central collisions
 16

Jet measurements

ATLAS dijet asymmetry measurement

$A_J = \frac{E_{T_1} - E_{T_2}}{E_{T_1} + E_{T_2}}$ $E_{T_1} > 100 \ GeV$ $E_{T_2} > 25 \ GeV$

1st indication of medium modifications of jets @ LHC

ATLAS Pb+Pb Jet Performance

 Evaluated first using 5 million PYTHIA dijet events overlayed on 10⁶ HIJING Pb+Pb events

 More recently, also evaluated using PYTHIA overlaid onto 10⁶ minimum-bias Pb+Pb data events

Pb+Pb Jet Spectra

 Absolute normalization awaiting final Pb+Pb absolute jet energy scale.

Jet yields: centrality dependence

- If factorization holds jet yields should vary with centrality $\propto N_{coll}$
- Compare yields between centrality bins using "R_{cp}"

$$R_{\rm CP} = \frac{\frac{1}{N_{\rm coll}} \frac{1}{N_{\rm evt}} \frac{dN}{dp_{\rm T}}\Big|_{\rm cent}}{\frac{1}{N_{\rm coll}} \frac{1}{N_{\rm evt}} \frac{dN}{dp_{\rm T}}\Big|_{60-80}}$$

-Overall jet energy scale divides out in ratio

Jet yields: centrality dependence (2)

- Systematic errors
 - Black band: fully correlated systematics
 - all points move up/down together
 - → JES, JER, efficiency, x_{ini}, R_{coll}
 - Red boxes: partially correlated systematics
 - ➡ unfolding
- Error bars: square root of diagonal elements of covariance matrix
- No significance to horizontal width of error bars

Jet yield/Ncoll reduced in central collisions
 ⇒for 0-10% by factor of ~2
 ⇒Suppression only weakly dependent on p_T

Centrality dependence of jet Rcp

 Study centrality evolution for fixed jet pT – R_{cp} vs N_{part}

⇒Smooth turn on of jet suppression between peripheral and central collisions.

Jet radius dependence of R_{cp}

Significant cancellation of correlated errors

Evaluate jet radius dependence of R_{cp}
 Modest but significant variation of R_{cp}
 Less suppression for larger R
 ⇒An indication of jet broadening?

Differential jet suppression

Measure:

 Jet v₂
 Ratios of jet yields in Δφ bins

⇒1st measurement of differential jet quenching using jets.

Inclusive jet fragmentation

Unfolded for jet and charged particle resolution

$$egin{aligned} D(z) &= rac{1}{N_{jet}} rac{dN_{chg}}{dz}, z = ec{p}_{chg} \cdot ec{p}_{jet} / \left|ec{p}_{jet}
ight| \ D(p_T) &= rac{1}{N_{jet}} rac{dN_{chg}}{dp_T} \end{aligned}$$

Inclusive jet fragmentation (2)

 First observation of modified parton shower in inclusive jets
 ⇒Not only seeing "left over" unquenched jets.

Inclusive jet fragmentation (3)

 Check that the modification is not due to the measurement of jet p_T ⇒ D(p_T)
 ⇒D(p_T) shows similar modifications

Jet fragmentation: R depdendence

Check that the modification is not due to underlying event fluctuations
 Use different jet sizes:

R = 0.2, 0.3

 Obtain the same results as R = 0.4

Observed modifications are robust

Di-jet asymmetry & acoplanarity

For more central collisions, see:

 Change in distribution of dijet asymmetry
 While no change in the distribution of Δφ
 ⇒Except for combinatoric pairs in central

Jet probes of the quark gluon plasma

 Use γ-jet pairs to directly probe the quark gluon plasma (QGP)

Key experimental question:
 How do parton showers in quark gluon plasma differ from those in vacuum?
 Where the photon provides a reference energy scale for the jet.

y-jet angular distribution

R = 0.2

R = 0.3

Take leading jet in hemisphere opposite photons with 60 < p_T < 90 GeV

- Jets with p_T > 25 GeV, R = 0.2 and 0.3
 - \Rightarrow Distribution of $\Delta \phi$ peaked at π

 \Rightarrow For following, apply cut $|\Delta \phi - \pi| < 7\pi/8$

y-jet momentum balance

→ central

Peripheral

• Plot distribution of $x_J = p_T^{\text{jet}}/p_T^{\gamma}$ - photon background pairs subtracted - unfolded for jet energy resolution \Rightarrow Substantial change in γ -jet balance

y-jet momentum balance

 Quantify the behavior seen in the x_J distributions -Evaluate $\langle x_{I} \rangle$ and **R** -- fraction of photons with jet passing cuts $\Rightarrow \langle x_{I} \rangle$ limited by acceptance ⇒ Significant change in R in central events

Dijet (and gamma-jet) acoplanarity

Theory

Virtuality matters

Virtuality Q² of the parton in the medium controls physics of radiative energy loss:

Weak coupling scenario

RHIC: 20 GeV parton, L = 3 fm

$$\hat{q} L \approx 4.5 \,\mathrm{GeV}^2 \gg \frac{E}{L} \approx 1.5 \,\mathrm{GeV}^2$$

Virtuality of primary parton is medium dominated and small enough to "experience" the strongly coupled medium

$$Q^{2}(L) \approx \max\left(\frac{\hat{q}L}{L}, \frac{E}{L}\right)$$

$$\uparrow$$
medium vacuum

LHC: 200 GeV parton, L = 3 fm

$$\hat{q} L \approx 9 \,\mathrm{GeV}^2 < \frac{E}{L} \approx 13 \,\mathrm{GeV}^2$$

Virtuality of primary parton is vacuum dominated and only its gluon cloud "experiences" the strongly coupled medium Is the lack of k_T broadening in the presence of significant quenching a death knell for "leading parton" models of energy loss?

Pb+Pb Z-jet measurement

Heavy flavor

Pb+Pb ($s_{NN} = 2.76 \text{ TeV}$)

Best-fit template

our 100 Single muons from heavy quark decays - 1 05 https://cdsweb.cern.ch/record/1451883<6 GeV 60-80% $-\Delta p_{\rm calo}(p,\eta,\phi)$ 60 $\Delta p_{\rm loss} - p_{\rm ID} - p_{\rm MS}$ $p_{\rm ID}$

Single muons from heavy quark decays

- In measured p_T range, muons primarily from c, b decays.
 - J/ ψ contribution ~ 1%
- Evaluate R_{cp} using 60-80% peripheral reference

Factor of 2.5 suppression in 0-10% relative to 60-80%

- Independent of muon p_T within errors
- Evolution with N_{part} consistent between p_T bins

Summary, perspectives

Summary

- Multiple observations of medium effects on parton showers:
 - Suppression of inclusive jet rate
 - Modification of jet fragmentation function
 - Modified dijet asymmetry distributions
 - Modified Z/γ-jet momentum balance
 - ⇒But the azimuthal directions of jets unaffected by the medium.
 - Suppressed production of heavy flavor
- Jet quenching calculations able to describe some of the above observations
 - Progress towards quantifying medium properties using jet measurements
 - \Rightarrow But, we are only just getting started.

Historical perspective (2)

From talk by BAC at Intersections 2009

Jets @LHC: Prospects

We are well along or started on all of these LHC will usher in new era for jet quenching -High-statistics studies of full jets. \Rightarrow ~ 10⁶ jets w/ E_T > 100 GeV for 0.5 nb⁻¹ -W/ large-acceptance tracking, calorimetry Single jets: $-R_{AA}$, frag. functions, J_{T} -versus centrality, $\Delta \phi$ from reaction plane •Di-jets: -Differential quenching, acoplanarity •y-jets: - Jet z, frag. function, acoplanarity Heavy flavor tagged jets 27

Dijet asymmetry, R = 0.2

 Underlying event fluctuations in R = 0.2 factor of 2 smaller than for R = 0.4
 Yet, modification of asymmetry persists
 ⇒NOT due to underlying event

Dijet asymmetry pr dependence

Fast forward 12 years

 one of several single hadron suppression measurements (for ATLAS, preliminary)
 –Work of Weizmann ATLAS heavy ion group Pb+Pb ($s_{NN} = 2.76 \text{ TeV}$)

Best-fit template

our 100 Single muons from heavy quark decays - 1 05 https://cdsweb.cern.ch/record/1451883<6 GeV 60-80% $-\Delta p_{\rm calo}(p,\eta,\phi)$ 60 $\Delta p_{\rm loss} - p_{\rm ID} - p_{\rm MS}$ $p_{\rm ID}$

Single muons from heavy quark

- In measured p_T range, muons from c, b decays.
 - J/ψ contribution ~ 1%
- Evaluate R_{cp} using 60-80% peripheral reference
 - Factor of 2.5 suppression in 0-10% relative to 60-80%
 - Independent of muon p_T within errors

Historical perspective (3)

From talk by BAC at Intersections 2009

Done except for more than one algorithm

Jets @ LHC: Considerations In order to have a rigorous Pb+Pb jet program @ LHC we must: Use more than one algorithm Different sensitivity to background \Rightarrow Different sensitivity to modified jets \Rightarrow Different false jet rates – Use more than one jet "size" Different sensitivity to background \Rightarrow Different sensitivity to modified jets \Rightarrow Different false jet rates Be able to reject false jets Be able to unfold "background" effects

20.1th century view of jet quenching

e.g. opacity expansion a la GLV

• High-p_T quarks or gluons propagate through and scatter in the QGP

- with collisional and radiative energy loss
- interference between vacuum and medium-induced radiation + LPM interference of multiple emissions
- Fragmentation in vacuum

Inclusive jet fragmentation

- What are the consequences of using quenched jet p_T for fragmentation?
- A simple toy model:
 - Jet loses energy via collimation.
 - \Rightarrow Modes (hadrons) with $p_T > x$ are unaffected.
 - ⇒Jet energy is reduced
- This toy model would yield an ENHANCEMENT in D(p_T) or D(z) for p_T > x when using reduced jet energy.
 ⇒Critical to control
 Are we seeing at large z Kopeliovich's pre-hadrons?
 ⇒Can they survive QGP?

