High p_{T} correlations in ALICE

Rongrong Ma, on behalf of ALICE Collaboration Yale University 10/22/2012, Wuhan, China

Outline

- Motivation
- ALICE detector
- Di-hadron correlations
 - Study near-side (NS) and away-side (AS) peaks, and compare Pb-Pb to pp
- h+jet coincidence measurement
 - New method to subtract the background jets

the modification of jet fragmentation in medium

Rongrong Ma, 8th high p_T workshop, Wuhan, China

10/22/12

Hadron trigger bias

(T.Renk, Phys.Rev .C85 064908)

- Hadron trigger -> strong surface bias -> maximize the recoil path length
- Jet trigger -> smeared and averaged by the background fluctuations -> less surface bias

ALICE detector

Di-hadron correlations

Correlation functions

- Angular correlations in $\Delta \varphi$ (azimuth) and $\Delta \eta$ (pseudo-rapidity) between a trigger particle and all the associated particles.
 - Cut on $p_{\rm T,trig}$ and $p_{\rm T,assoc}$

 Correlations can be quantified via per trigger associated particle yield or the width of the peaks

10/22/12

Correlation at low p_{T}

- Tracks: |η|<0.9
- Signal extraction: η -gap subtraction $1 < |\Delta \eta| < 1.6$
 - $-\Delta\eta$ independent (long range) correlations
 - Flow + uncorrelated background
- Jet-like NS peak ($\Delta \phi = 0, \Delta \eta = 0$)

10/22/12

Quantify the NS peak with width

• Fit the correlation with a sum of two 2D Gaussians

• $\sigma_{\Delta\eta}$: increase towards central collisions

-> longitudinal flow?

Predicted in PRL 93,242301 (2004)

1()

AMPT Comparison

 AMPT (A MultiPhase Transport Code) describes collective effects (e.g. v₂, v₃, v₄) at the LHC

- Here version with string melting (2.25) is shown

• Agree with data for the near-side peak width

- Interplay of jet and flow in AMPT via parton and hadron scattering

Correlation at high $p_{T_2} 8 < p_T^{trig} < 15 \text{ GeV/c}$

- High p_T tracks are used to enhance the signal to background ratio -> reliable extraction of signal
- Tracks: $|\eta| < 1.0$
- Correlation in azimuth: $\Delta \phi$
- Background subtraction:
 - ZYAM: fit a constant value in the region $|\Delta \varphi \pi/2| < 0.4$
 - ZYAM + v2 background
 - η-gap method: all the flow components are subtracted

10/22/12

Ratio of hadron yield in Pb-Pb to pp

- Enhancement of NS yield
 - Softening of fragmentation function in medium
 - Harder parton distribution in central collisions
 - Relative abundance of gluon vs quark jets
- STAR at RHIC: I_{AA} is consistent with 1 (PRL 97, 162301)

- Suppression of AS yield
 - Weak dependence on *p*_{T,assoc}
 - Less suppressed than PHENIX π⁰-h measurement at RHIC (PRL 104, 252301)

13

- The away-side hadrons are expected to experience larger inmedium path
- Away-side spectrum is less steeply falling
- Important for models to get both R_{AA} and I_{AA} right.

h+jet coincidence measurement

h+jet coincidence measurement

- Goal: precise measurements of jet structure -> minimal fragmentation bias
- Observable: hadron-triggered semi-inclusive recoil jet distribution
 - Trigger hadron: leading charged particle in the event
 - Recoil jet: count the jet rate in the away side per trigger hadron

Analysis setup

- Hadron trigger: p_T large enough to be "rare" per central Pb-Pb event (0-20%) -> high probability that the hard recoil jet is from the same hard scattering
- Track $p_{\rm T} > 0.15 \, {\rm GeV/c}$
- Charged jets: anti- $k_{\rm T}$ with R=0.2 and 0.4, $|\eta_{\rm jet}|$ <0.5

- Correct event-wise for background: $p_{T,jet} = p_T^{reco} - \rho \times A$

• pp reference: PYTHIA6 (Perugia-2010)

Combinatorial jet distribution

- **Conjecture: combinatorial jet distribution is independent of trigger** *p*_T arXiv:1208.1518
 - Caveats: reaction plane and centrality biases are minimized for high $p_{\rm T}$ triggers

• Remove the combinatorial jets via **DIFFERENCE** of triggered distributions: Δ_{recoil}

Remove combinatorial jets

 Resulting Δ _{recoil} is smeared by the background fluctuation +detector effects-> unfolding

- Correlated uncertainty
 - Flow bias on background
 - Tracking efficiency
 - Reference distribution scaling factor

- Shape uncertainty
 - Minimum p_T min cut on measured spectrum
 - Regularization: β variations
 - Difference to Bayesian result

10/22/12

Rongrong Ma, 8th high p_T workshop, Wuhan, China

20

Ratio of recoil jet yield: ΔI_{AA}

• Observable: the recoil jet yield (Δ_{recoil}) in Pb-Pb compared to pp

$$\Delta I_{AA} = \left\langle \frac{Y_{AA}^{20-50} - Y_{AA}^{15-20}}{Y_{pp}^{20-50} - Y_{pp}^{15-20}} \right\rangle \qquad Y = \frac{1}{N_{trig}} \frac{dN_{jet}^{assoc}}{dp_{T,jet}}$$

Finite statistics -> average over broad p_T^{trig} bins -> reference is reweighted using trigger hadron spectrum in Pb-Pb to minimize the influence of large p_T^{trig} bin

Recoil Jet ΔI_{AA}^{PYTHIA}

- *R*=0.4: recoil jet yield $\Delta I_{AA}^{PYTHIA} \approx 0.75$, approx. constant with jet p_T
- R=0.2: similar ΔI_{AA}^{PYTHIA} as R=0.4
- Systematic uncertainties are too large to make more conclusive statements about out-of-cone radiation

I_{AA} vs R_{AA}

Di-hadron: $p_{T}^{trig} > 8 \text{ GeV/}c, I_{AA}(h) \approx 0.6$ $R_{AA}(h) \approx 0.3$ h+jet: $p_{T}^{trig} > 20 \text{ GeV}/c, I_{AA}(jet) \approx 0.75$

10/22/12

Rongrong Ma, 8th high p_T workshop, Wuhan, China

 $R_{AA}(jet) \approx 0.3$

Compare to models

- Left: JEWEL describes the ALICE charged jet R_{AA} right, but undershoots the I_{AA}
- Right: YaJEM describes asymmetry A_j, and predicts an I_{AA} in agreement with data.

24

New constraint on models (energy loss, geometry, path length dependence, etc)

Summary

- Di-hadron correlations:
 - Low $p_{T:} p_T^{trig} < 8$, $p_T^{assoc} < 3 \text{ GeV/}c$
 - In central Pb-Pb events, significant broadening of near-side peak in Δη, but not in Δφ: interplay between longitudinal flow and jet shape?
 - High p_T : 8 < p_T^{trig} < 15 GeV/*c* (dominated by jet signal)
 - Constraint for models: enhancement in near-side yield, but suppression at away-side.
- h+jet coincidence measurement: new method to suppress background contribution
 - Minimal fragmentation bias; infrared and collinear safe
 - Consistent results for different radii (0.2, 0.4) within large uncertainty
 - Next: evolution of recoil jet spectrum by changing trigger p_{T} range
- It is important for models to describe both R_{AA} and I_{AA} for both single hadrons and jets.

10/22/12 Rongrong Ma, 8^{th} high p_T workshop, Wuhan, China **25**

Backup

Event and Track Selection

- Data sets
 - Pb-Pb at Vs_{NN}=2.76 TeV: 15M events from 2010 data taking period in 0-90% centrality class
 - pp reference: 55M events from 2011 low energy run
- Centrality selection: VZERO (2.8 < η < 5.1 and -3.7 < η < -1.7)
- Tracking

10/22/12

- TPC tracks constrained to the primary vertex
 - Optimal azimuth (ϕ) acceptance = uniformity for angular correlations
 - Minimize two-track cluster merging effects in the TPC
- Two step correction procedure
 - 2-track acceptance correction using mixed events => shape
 - Single particle efficiency and contamination correction => yield

Two-track acceptance correction

Event Mixing: performed in bins of

- Long. vertex position (z, $\Delta z = 2$ cm)
- Centrality: 1% steps from 0-5%;
 then 5- 10% followed by 10% steps.
- For each z-bin calculate the ratio:

$$\frac{d^2 N^{raw}}{d\Delta \varphi d\Delta \eta} (\Delta \varphi, \Delta \eta, z) = \frac{1}{N_{trig}(z)} \frac{N_{pair}^{same}(\Delta \varphi, \Delta \eta, z)}{N_{pair}^{same}(\Delta \varphi, \Delta \eta, z)} \beta$$

- β chosen such that correction interpolated to $\Delta \phi = \Delta \eta = 0$ is 1.
- Calculate weighted average of

 $\frac{\text{ratios}}{d\Delta\varphi d\Delta\eta} (\Delta\varphi, \Delta\eta) = \frac{\sum_{z} N_{trig}(z) \frac{d^2 N^{raw}}{d\Delta\varphi d\Delta\eta} (\Delta\varphi, \Delta\eta, z)}{\sum_{z} N_{trig}(z)}$

10/22/12

Single particle corrections

Systematic Uncertainties

- Sources
 - η range of flow subtraction
 - Track selection
 - Vertex range
 - Influence of resonances and conversions
 - Two-track effect
 - Wing (increase at large $\Delta\eta$) correction
 - Two different fit procedures

• Significant increase of $\sigma_{\!\Delta\eta}$ towards central events

Vacuum

(reference)

- $\sigma_{\Delta\eta} > \sigma_{\Delta\phi}$ (eccentricity ~ 0.2)
- Armesto, Salgado, Wiedemann suggested that longitudinal flow can deform the conical jet shape (PRL 93,242301 (2004))

Static medium:

Broadening

Flowing medium:

Anisotropic shape

• Interplay of flow with the jet?

PRL 93,242301 (2004)

10/22/12

Compare to RHIC: $\sqrt{s_{NN}} = 200 \text{ GeV}$

STAR: NS I_{AA} is consistent with 1

Very different kinematics: 8 < $p_{\tau}^{\text{trig}} < 15 \text{ GeV/c}$ is almost the highest hadron trigger accessible at RHIC

- PHENIX: π^0 -h measurement
- More suppressed
- Increase of I_{AA} below 2

Rongrong Ma, 8^{th} high p_{τ} workshop, Wuhan, China 32

The Response Matrix:

background fluctuation & detector effects

Background response: using random cones (ALICE, JHEP 03 (2012) 053)

- $\sigma=9.74 \text{ GeV}$ for 0-20% central and $p_T^{\text{const}}>0.15 \text{ GeV/c}$
- **Detector response:** dominated by tracking efficiency
 - Based on PYTHIA fragmentation
- Combined matrix: $R = R_{det} R_{bkg}$

- Detector and background effects go in opposite directions
- Spectrum is almost exponential
- Reduced combined effect

33

Unfolding stability

- Two systematically different techniques
 - Bayesian unfolding (G.D'Agostini , NIM A362 (1995)487)
 - χ^2 minimization of refolded and measured

10/22/12

Rongrong Ma, 8th high p_T workshop, Wuhan, China

34

Recoil Jet ΔI_{AA}^{PYTHIA}

pp reference: PYTHIA (Perugia 2010)

- *R*=0.4
- Constituents:
 p_T^{const} > 0.15 GeV/c
- No fragmentation bias imposed on recoil jet population

10/22/12

$p_{\rm T} > 0.15 {\rm ~GeV/c}$

$p_{\rm T}$ > 2 GeV/c

 No indication of large variation of fragmentation pattern compared to PYTHIA