Correlation and Flow:

Do we understand them as well as we claim?

Fuqiang Wang

PURDUE UNIVERSITY

e of Particle Physics, China Normal University, 1430079, China 2.iopp@gmail.com

mation and registration: f.ccnu.edu.cn/~hpt2012 Pre-workshop:

Two main tools

JET QUENCHING

Hydrodynamics Pressure, energy density, Equilibrium Probe Equation of State Low p_T Calibrated probe in pp Jet-medium interactions, Energy loss Probe QCD medium properties High p_T

Two-particle correlations contain both flow and nonflow

CORREL SIGNAL + CORREL BKGD = NONFLOW + FLOW

Triangular and higher order harmonics

- Hydrodynamic expansion
 - \rightarrow anisotropic flow;
- Flow is sensitive to early stage of heavy ions collisions

$$dN/d\phi \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_{nR}))$$

- Event-by-event initial geometry fluctuation
 → odd harmonics
- The reaction plane azimuthal angle is unknown
 - \rightarrow the measured anisotropies = flow(v) + flow fluctuation (σ) + nonflow (δ)

particle correlation unrelated to the reaction plane

Some say: All are v_n flow

So, the real question is what's in v_n.

Fuqiang Wang

What is in v_n?

One support: Flow factorization

Caveat:

- Due to fluctuations, $V_{n\Delta}$ does not factorize in general
- Precise factorization if $\sigma_n \propto \langle v_n \rangle$

v_n factorization

Nonflow factorization?

Common perception:

Nonflow should not factorize

However:

Independent jet fragmentation (except the common jet thrust axis)

 $\left\langle \cos n(\phi_i - \phi_j) \right\rangle = \left\langle \cos n[(\phi_i - \psi_{jet}) - (\phi_j - \psi_{jet})] \right\rangle = \left\langle \cos n(\phi_i - \psi_{jet}) \right\rangle \left\langle \cos n(\phi_j - \psi_{jet}) \right\rangle$

\rightarrow Jet correlation may approximately factorize !

Nonflow approximate factorization

 $\delta_2(p_T^{\text{Ref}})$ approximately independent on p_T

 \rightarrow Nonflow approximately factorizes in a limited p_{T} range

 \rightarrow factorization is not unique feature of flow

Why is `flow' factorization so good? Because it is bootstrapped!

Anisotropic flow + non-flow: $V_{2\Delta}(p_T^a, p_T^b) = v_2(p_T^a)v_2(p_T^b) + \delta_2(p_T^a)\delta_2(p_T^b)$

$$\frac{V_{n\Delta}(p_{T}^{b}, p_{T}^{a})}{v_{n}^{\prime}(p_{T}^{b})} - 1 = \frac{v_{n}(p_{T}^{b})v_{n}(p_{T}^{c}) + \delta_{n}(p_{T}^{c}) + \delta_{n}(p_{T}^{c})\delta_{n}(p_{T}^{c})}{\frac{v_{n}(p_{T}^{c}) + \delta_{n}(p_{T}^{c}) + \delta_{n}(p_{T$$

- $\delta_n(p_T)/v_n(p_T) \sim 10\% \rightarrow \text{deviation} \sim 10^{-3}$
- $\delta_n(p_T) \propto v_n(p_T) \rightarrow$ precise factorization even if nonflow is present

Lessons learned

- Flow \rightarrow factorization; Factorization \rightarrow flow
- Fourier components do not give further insights.
- We have to separate flow and nonflow in v_n .

Separate flow and nonflow

Lingshan Xu et al. PHYSICAL REVIEW C 86, 024910 (2012)

 $v\{2\}^{2} = \langle v_{\alpha} \rangle \langle v_{\beta} \rangle + \sigma_{\alpha} \sigma_{\beta} + \sigma'(\Delta \eta) + \delta(\Delta \eta) \qquad v\{4\}^{2} \approx \langle v_{\alpha} \rangle \langle v_{\beta} \rangle - \sigma_{\alpha} \sigma_{\beta} - \sigma'(\Delta \eta)$

No Assumption about flow η dependence on our analysis!

The decomposed 'flow' appears to be independent of $\boldsymbol{\eta}$.

Flow vs η

- Flow seems independent of η . Note no assumption of η dependence in our approach.
- Fluctuation / flow ~ 36%

Near-side nonflow

- Calculate <nonflow> of all (η_1, η_2) bins with x < η -gap < 2. (x = horizontal axis)
- $\Box \Delta \eta > 0$, nonflow / flow ~ 40% for v₃, 10% for v₂
- $\Box \Delta \eta > 0.7$, nonflow / flow ~ 20% for v₃, 5% for v₂

$\Delta\eta$ -indep. away-side nonflow

- Hijing: away-side/ near-side = 1 at $\Delta\eta>0$
- Assuming the same ratio in data:
 - $\Delta \eta > 0$: $\delta_2^{\text{Near Side}} / v_2^2 = 10\%$ $\delta_2^{\text{Away Side}} / v_2^2 = 10\%$
 - $\Delta \eta > 0.7$: $\delta_2^{\text{Near Side}} / v_2^2 = 5\%$ $\delta_2^{\text{Away Side}} / v_2^2 = 10\%$

Large enough $\Delta\eta$ gap, near-side nonflow dies off and the away-side nonflow eventually also dies off. However...

Large $\Delta \eta$ to reduce nonflow?

EP decorrelation over η

Xiao et al. arXiv:1208.1195

- EP's decorrelate with $\Delta \eta$.
- η-gap reduces nonflow, but also under-measures flow.

\textbf{v}_{n} depends on $\Delta\eta$

The difference in different methods are due to different $\Delta\eta$ window used to measure v₃.

RP-dependent dihadron correlations

v₃ does not change conclusion

- Flow may depend on trigger particle direction ϕ_s wrt RP, e.g. v_2 may decrease with ϕ_s .
- The in-plane ridge may not be as prominent. The in-plane away-side may be broad.
- We've taken $\langle v_2^{trig}\{2\} \rangle \langle v_2^{asso}\{2\} \rangle$. This is OK even flow fluctuation is large, because $v_2\{2\}$ already include fluctuation. However, if v_2^{asso} is correlated with ϕ_s , then $\langle v_2^{trig}\{2\} v_2^{asso}\{2\} \rangle \neq \langle v_2^{trig}\{2\} \rangle \langle v_2^{asso}\{2\} \rangle$.
- Actually, the inclusive correction <v2^{trig}{2}*v2^{asso}{2}> should be larger than
 <v2^{trig}{2}>*<v2^{asso}{2}>_{max}! The flow subtraction to inclusive dihadron correlation would be too small.

Jet-like correlations

- Jet-like correlations with p_T>3 GeV/c trigger particles are invariant in-plane to out-of-plane, and from pp to central AA
 → these high p_T particles are mainly from jets.
- Going to lower trigger p_T, expect hydro contribution to particle production
 → Jet-like correlations will be reduced.
- Look at low p_T triggered dihadron correlations

Low-p_T trigger jet-like correlations

Correlation and Flow: Do we understand them as well as we claim?

NO.

Issues and open questions:

- Need to refrain a bit from simple Fourier components.
- η gap to reduce nonflow may have undesired side effect.
- Is it possible to remove all nonflow?
- $< v_2^{trig} * v_2^{asso} > \neq < v_2^{trig} > < v_2^{asso} >$
- Can hydro particles have same jet-like correlations as in d-Au?
- Do we understand p-p and d-Au?