# A Study of $\Lambda\bar{\Lambda}$ Correlations

Cheryl Theroux Dr. Homer Neal Daniel Scheirich



### Analysis Overview

- We are studying correlations between hyperons produced in high energy collisions
  - Specifically, we are looking at  $\Lambda$   $\Lambda$  pairs where

$$p + p \to \Lambda + \bar{\Lambda} + X$$
  
 $\Lambda \to p \pi^- \text{ and } \bar{\Lambda} \to \bar{p} \pi^+$ 

 Incident proton energies = 3.5 TeV/c each (highest energy at which these reactions have been studied)

#### • Hyperon production is not well understood

- In this study, we want to know if  $\Lambda\ \bar{\Lambda}$  pairs come from an  $s\bar{s}$  pair produced in the vacuum
- We will look at **spin correlations** to do this
- A correlation between the spins would be evidence that the  $\Lambda\,$  and  $\bar{\Lambda}\,$  come from the same  $s\bar{s}\,$  pair

### Analysis Overview

- Previous studies have found that for  $p + p \rightarrow \Lambda + X$ 

the As have a large polarization, which has never been satisfactorily explained

We hope to achieve a better understanding of this effect in our analysis
p (and p Be) -> A X (400 GeV/c)



## Analysis Method

- Using data from the ATLAS experiment
- We cannot directly measure the spin of the  $\Lambda$  or  $\Lambda$ 
  - The angular distribution of the protons/antiprotons depends on the spin of the  $\Lambda / \overline{\Lambda}$  and is given by  $\frac{1}{2}(1 \pm \alpha_{\Lambda} P \cos \gamma)$  where  $P = \frac{N^{\uparrow} N^{\downarrow}}{N_{total}}$
  - We will study these angular distributions in our analysis to extract the relevant spin information
- We also plan to develop a toy Monte Carlo to simulate/validate our analysis



