Search for the Standard Model Higgs Boson in the $H \rightarrow WW^{(*)} \rightarrow lvlv$ decay mode for the ATLAS Experiment

Victor A. Rodriguez (The University of Texas at Austin)

$H \rightarrow WW \rightarrow h h v$ group

- ATLAS Collaboration
- University of Toronto, Canada group
- Advisor: Prof. Richard Teuscher

Introduction —Higgs production modes

eeeec Η ggF —gluon gluon fusion 000 W, ZVBF —vector boson fusion W, Zq WH/ZH — Higgs-strahlung Η

- Higgs boson decays into two W bosons, which in turn decay into a lepton and a neutrino
- Signature:
 - Two oppositely charged leptons
 - > Large missing transverse energy, E_T^{miss} , due to the two neutrinos
- Cannot reconstruct mass! Understanding E_T^{miss} is crucial

Strategy —Cut-based Analysis

Study the kinematic and topological properties of the signal and of the main background processes (those that lead to two leptons in their final state) with MC simulations

- Pre-selection cuts
 - QCD predictions
 - Kinematic cuts
 - Topological cuts
- Jet cuts
- Mass cuts

>Use Control Regions to study backgrounds individually.

Main Backgrounds

- WW continuum
- *W* + jets
- W/γ^* + jets
- t t t
- Single *t*
- More: $WW, ZZ, W/\gamma$

Analysis for 2011 data and MC

So far, I have been trying to reproduce the results obtained with the 2011 data and MC. Example:

Next...

- Study the backgrounds individually
- Start with the 2012 MC data
- Yesterday the unblinding of the 2012 data was approved for the H-WW group
- Task: Optimize the jet-Pt cuts
 - Study/try to reduce the Drell-Yan process background

Switzerland fun!

