

Jian-Wei Qiu Brookhaven National Laboratory

Based on work done with Kang, ...

CERN Workshop on "pA@LHC", June 4 - 8, 2012, Geneva, Switzerland

Outline of my talk

- \Box Why Z⁰ and its p_T distribution?
- □ Two-scale cross sections and QCD resummation
- □ Collins-Soper-Sterman (CSS) formalism
- □ The b-space and role of nonperturbative large b-region
- □ pA collision and nuclear A-dependence
- □ Rapidity dependence and shadowing

□ Summary

What do we know?

□ Z⁰ in AA-collision:

Very small centrality (or A) dependence

- ♦ Final-state: No strong interaction
- ♦ Initial-state: Not too small x ~ 0.03 (weak antishadowing in EPS09)

Transverse momentum distribution

□ Z⁰-PT distribution in pp collisions:

Cross section of two very different scales

□ Interesting region: $p_T << M_Z \sim 91 \text{ GeV}$

□ Fixed order pQCD calculation is not stable!

□ Large logarithmic contribution from gluon shower:

Resummation is necessary!

Early approach to resummation

 Z^0

LO Differential Q_T-distribution as Q_T \rightarrow 0:

$$\frac{d\sigma}{dydQ_T^2} \approx \left(\frac{d\sigma}{dy}\right)_{\text{Bom}} \times 2C_F\left(\frac{\alpha_s}{\pi}\right) \frac{\ln\left(Q^2/Q_T^2\right)}{Q_T^2} \Rightarrow \infty$$

$$Q^2 = \frac{Q^2}{\int_0^2 \frac{d\sigma}{dydQ_T^2}} dQ_T^2 \approx \left(\frac{d\sigma}{dy}\right)_{\text{Bom}} + O\left(\alpha_s\right) \quad \text{with } Q^2 \approx M_W^2$$

 \Box Integrated Q_T -distribution:

$$\frac{Q_{T}^{2}}{\int_{0}^{0} \frac{d\sigma}{dy dp_{T}^{2}}} dp_{T}^{2} = \begin{bmatrix} Q^{2} & Q^{2} \\ \int_{0}^{0} - \int_{Q_{T}^{2}}^{0} \end{bmatrix} \frac{d\sigma}{dy dp_{T}^{2}} dp_{T}^{2} dp_{T}^{2} dp_{T}^{2} dp_{T}^{2} dp_{T}^{2} dp_{T}^{2} dp_{T}^{2} \end{bmatrix} = \left(\frac{d\sigma}{dy}\right)_{\text{Born}} \times \left[1 - \sum_{Q_{T}^{2}}^{Q^{2}} 2C_{F} \frac{\alpha_{s}}{\pi} \frac{\ln(Q^{2}/p_{T}^{2})}{p_{T}^{2}} dp_{T}^{2}\right] = \left(\frac{d\sigma}{dy}\right)_{\text{Born}} \times \left[1 - C_{F} \frac{\alpha_{s}}{\pi} \ln^{2} \left(Q^{2}/Q_{T}^{2}\right)\right]$$

$$\approx \left(\frac{d\sigma}{dy}\right)_{\text{Born}} \times \exp\left[-C_{F} \frac{\alpha_{s}}{\pi} \ln^{2} \left(Q^{2}/Q_{T}^{2}\right)\right]$$
Assume this exponentiates

Resummed Q_T distribution

 \Box Differentiate the integrated Q_T -distribution:

$$\frac{d\sigma}{dydQ_T^2} \approx \left(\frac{d\sigma}{dy}\right)_{\text{Born}} \times 2C_F\left(\frac{\alpha_s}{\pi}\right) \frac{\ln\left(Q^2/Q_T^2\right)}{Q_T^2} \times \exp\left[-C_F\left(\frac{\alpha_s}{\pi}\right)\ln^2\left(Q^2/Q_T^2\right)\right] \Rightarrow 0$$

compare to the explicit LO calculation:

$$\frac{d\sigma}{dydQ_T^2} \approx \left(\frac{d\sigma}{dy}\right)_{\text{Born}} \times 2C_F\left(\frac{\alpha_s}{\pi}\right) \frac{\ln\left(Q^2/Q_T^2\right)}{Q_T^2} \implies \infty$$

 Q_T -spectrum (as $Q_T \rightarrow 0$) is completely changed!

We just resummed (exponentiated) an infinite series of soft gluon emissions – double logarithms

Still a wrong Q_T -distribution

Experimental fact:

$$\frac{d\sigma}{dydQ_T^2} \Rightarrow \text{finite [neither ∞ nor $0!]} \text{ as } Q_T \to 0$$

Double Leading Logarithmic Approximation (DLLA):

- Radiated gluons are both soft and collinear with strong ordering in their transverse momenta
- ♦ Ignores the overall vector momentum conservation
- $\diamond\,$ Double logs ~ random work ~ zero probability to be Q_T = 0

DLLA over suppress small Q_T region

Resummation of uncorrelated soft gluon emission leads to too strong suppression at $Q_T=0$

Importance of momentum conservation

□ Vector momentum conservation:

Particle can receive many finite k_T kicks via soft gluon radiation, but, yet still has $Q_T=0$

 \Box Subleading logarithms are equally important at $Q_T=0$

□ Solution:

Impose 4-momentum conservation at each step of soft gluon resummation

CSS b-space resummation formalism

□ Leading order K_T-factorized cross section:

The Q_T -distribution is determined by the b-space function: $b W_{AB}(b,Q)$

Role of each term in CSS formalism

$$\sigma_{\text{TOT}} = \sigma_{\text{RESUM}} + \sigma_{\text{PERT}} - \sigma_{\text{ASYM}}$$

transverse momentum q_{T}

b-space resummation

□ b-space distribution:

$$W_{AB}(b,Q) = \sum_{ij} W_{ij}(b,Q)\hat{\sigma}_{ij}(Q)$$

Collins-Soper equation:

$$\frac{\partial}{\partial \ln Q^2} \tilde{W}_{ij}(b,Q) = \left[K(b\mu,\alpha_s) + G(Q/\mu,\alpha_s) \right] \tilde{W}_{ij}(b,Q) \quad (1)$$

Evolution kernels satisfy RG equation:

$$\frac{\partial}{\partial \ln \mu^2} K(b\mu, \alpha_s) = -\frac{1}{2} \gamma_K(\alpha_s(\mu))$$
(2)
$$\frac{\partial}{\partial \ln \mu^2} G(Q/\mu, \alpha_s) = \frac{1}{2} \gamma_K(\alpha_s(\mu))$$
(3)

Solution - resummation: $W_{ij}(b,Q) = W_{ij}(b,1/b) e^{-S_{ij}(b,Q)}$ **Sudakov form factor** All large logs
Boundary condition – perturbative if b is small!

Perturbative solution

□ Boundary condition – collinear factorization:

$$W_{AB}^{\text{pert}}(b,Q) = \sum_{a,b,i,j} \sigma_{ij\to Z} \left[\phi_{a/A} \otimes C_{a\to i} \right] \otimes \left[\phi_{b/B} \otimes C_{b\to j} \right] \times e^{-S_{ij}(b,Q)}$$

Extrapolation to large-b?

- ♦ Non-perturbative
- Predictive power?

$$\sigma^{\text{Resum}} \propto \int_0^\infty db \, J_0(q_T \, b) b \, W(b, Q)$$

Phenomenology

bW(b,Q)

Resummed cross section:

 $\frac{d\sigma_{AB\to Z}^{\text{resum}}}{da_{\pi}^2} \propto \int_0^\infty db \, J_0(q_T b) \, b \, W(b, Q)$ $W(b,Q) = \begin{cases} W^{\text{pert}}(b,Q) & b \le b_{max} \\ W^{\text{pert}}(b_{max},Q)F_{OZ}^{NP}(b,Q,b_{max}) & b > b_{max} \end{cases}$

Resummed cross section:

b(GeV)

Qiu, Zhang, 2001

Phenomenology – Tevatron

No free fitting parameter!

Phenomenology – Higgs

Berger, Qiu, 2003

Effectively no non-perturbative uncertainty!

Phenomenology – Z⁰ @ LHC

Kang, Qiu, 2012

Effectively no non-perturbative uncertainty!

Nuclear dependence in pA

Resummed partonic hard parts are insensitive to A:

$$W_{AB}^{\text{pert}}(b,Q) = \sum_{a,b,i,j} \sigma_{ij\to Z} \left[\phi_{a/A} \otimes C_{a\to i} \right] \otimes \left[\phi_{b/B} \otimes C_{b\to j} \right] \times e^{-S_{ij}(b,Q)}$$

Only source of A-dependence is from nPDFs

□ Large-b non-perturbative parts are sensitive to A:

$$W^{\text{Nonpert}}(b,Q) = W^{\text{pert}}(b_{max},Q) F_{QZ}^{NP}(b,Q,b_{max})$$

$$F_{QZ}^{NP}(b,Q;b_{max}) = \exp \left\{ -\ln(\frac{Q^2 b_{max}^2}{c^2}) \left[g_1 \left((b^2)^{\alpha} - (b_{max}^2)^{\alpha} \right) \right] \text{Leading twist} + g_2 \left(b^2 - b_{max}^2 \right) \right] \text{Leading twist}$$

$$-\bar{g}_2 \left(b^2 - b_{max}^2 \right) \right\} \text{Dynamical power corrections}$$

 \Box g₂ = Power correction to evolution of K and G:

$$g_2 \propto Q_s^2$$
 $g_2 \Rightarrow g_2 A^{1/3}$

Dependence on nPDFs:

$$\mu = \frac{C_2}{b} \approx \frac{1}{b} > b_{max}^{-1} > 1 - 2 \text{ GeV}$$

Cover nPDFs for a much wider range of Q (or μ)!

Strong shadowing effect for Z⁰ – production!

Predictions – pA @ LHC

□ "Cronin" effect for Z⁰ production?

Transverse momentum broadening for Z⁰

Broadening:

 $\Delta \langle q_T^2 \rangle_{pA} = \langle q_T^2 \rangle_{pA} - \langle q_T^2 \rangle_{pN}$

□ Much weak broadening:

Kang, Qiu, 2008

Z⁰ – Rapidity distribution

\Box R_{pA} of Z⁰ is determined by nPDFs:

Summary

- \Box Rapidity distribution, $d\sigma/dy$, clean probe of nPDFs at M_z
- \Box Gluon shower dominates the p_T distribution of Z⁰
- $\square R_{pA} vs p_T could probe both shadowing and antishadowing at a scale << M_z:$
- \Box Z⁰ production in pA is an excellent benchmark:
 - Theoretical calculation is insensitive to non-perturbative physics other than nPDFs!

Thank you!