SLHCV3.1b: optics repository for HL-LHC 150T/m triplet scenario

R. De Maria (in close collaboration with S. Fartoukh)

CERN, Geneva

HL-LHC WP2, 2012/03/16

Content

1 Introduction

- Chromatic aberration
- 5 Repository files

Introduction

SLHCV3.1b contains a realistic, nearly complete, usable optics model for an HL-LHC scenario using 150T/m triplets Based on SLHCV3.0 and ATS_V6.503. ¹ It is not final since it still depends on some working assumptions:

- interconnect lengths between magnets,
- lengths and types of triplet correctors,
- installation and relocation of several matching quadrupoles,

and misses some parts

optics transitions,

and some optimizations

- phase advance optimization for IR2/8/4/6,
- control of Q",
- position of triplet BPMS,
- IP1-IP5 phase advance (or maybe working point).

¹SLHC Project Report 49, 50, 53, 55, ATS Note 2011 33, 60, 132 and reference therein.

R. De Maria (CERN, Geneva)

Repository: names and specs

β_{\times}^*	β_{\parallel}^*	θ_{\times}	sep	imes planes
[m]	[m]	$[\mu rad]$	[mm]	IP1/IP5
11.0	11.0	170	2	v/h, adj.
5.5	5.5	245	2	v/h, adj.
2.0	2.0	80	2	v/h, adj.
0.40	0.40	180	0.75	v/h, adj.
0.15	0.15	295	0.75	v/h, adj.
0.10	0.10	360	0.75	v/h, adj.
0.30	0.75	275	0.75	v/h, fixed
0.20	0.05	335	0.75	v/h, fixed
0.30	0.75	275	0.75	h/v, fixed
0.20	0.05	335	0.75	h/v, fixed
	$\begin{array}{c} \beta_{\times}^{*} \\ [m] \\ 11.0 \\ 5.5 \\ 2.0 \\ 0.40 \\ 0.15 \\ 0.10 \\ 0.30 \\ 0.20 \\ 0.30 \\ 0.20 \\ 0.20 \end{array}$	$\begin{array}{c c} \beta_{\times}^{*} & \beta_{\parallel}^{*} \\ \hline [m] & [m] \\ \hline 11.0 & 11.0 \\ 5.5 & 5.5 \\ \hline 2.0 & 2.0 \\ 0.40 & 0.40 \\ 0.15 & 0.15 \\ 0.10 & 0.10 \\ 0.30 & 0.75 \\ 0.20 & 0.05 \\ 0.30 & 0.75 \\ 0.20 & 0.05 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

with their thin version.

Total of 4 IR5, 7 6, 6 IR2/8 new optics, the rest really minor changes with some very similar to SLHC3.0 or ATSV6503 or the nominal LHC.

A rich toolkit and few sample jobs is provided as well derived from SLHC3.0 as well. Mask file, error assignment routines, correction filters for tracking are under preparation.

LHC IR layout

Layout changes

IR1 and IR5 triplet area ($l_{Q1} = l_{Q3}$, $l_{Q2a} = l_{Q2b}$):

IP 23 {.46 | Q1 | .46} .36 .12 BPM .24
{.36 | MCBXDa | .46 | Q2a | .46 } .24 BPM .12 .36
{.46 | Q2b | .46 | MCBXDb | .36 } .24 BPM .12 .36
{.46 | Q3 | .46 } .24 BPM .12 .36
{.18 .18 |MCBXC | .18 .20 .115 |MQSX3 | .115
.20 .075 |MCDSX3 | .075 .20 .075 |MCSTX3 | .075
.20 .075 |MCDTSX3 | .075 .25}

D1: single sc. dipole; TAN and TCT: nominal length D2: larger aperture 2-in-1, moved towards the IP by 15m Crab cavities: 3 staggered modules per side per IP per beam Q4: larger aperture 2-in-1 Q5: long MQY type moved towards the arc by 11m Q10: added MS circuit and replaced MCBC IR6: new long MQY type Q5

Layout parameters

- 1.MQXL :=
- 1.MQX :=
- dq1q2a :=
- dq2aq2b :=
- dq2bq3 :=
- deltaposD2 :=
- deltaposQ4 :=
- deltaposQ5 :=
- deltaposQ6 :=

- 7.6850000000;
- 6.5770000000;
- 3.5600000000;
- 1.9150000000;
- 3.5600000000;
- -15.000000000;
 - 0.000000000;
 - 11.000000000;
 - 0.000000000;

Lengths in m.

MCBX and MCBYY strengths

name	acbx1	acbx3	acbyy
opt_150_11000_11000	18.18	45.61	98.03
opt_150_2000_2000	5.62	21.27	47.80
opt_150_5500_5500	17.57	65.54	143.68
opt_150_0400_0400	6.62	49.73	109.97
opt_150_0150_0150	6.62	81.50	180.23
opt_150_0100_0100	6.62	99.46	219.95
opt_150_0075_0300	6.62	75.98	168.01
opt_150_0050_0200	6.62	92.55	204.67
opt_150_0075_0300hv	6.62	75.98	168.01
opt_150_0050_0200hv	6.62	92.55	204.67
max nominal values	64	64	97
reserve for orbit correction	25	25	n/a

Maximum values per family in μ rad.

Crossing scheme

Crossing scheme

Aperture model

Based on Phasel.

- MQX and MC_X: octagon scaled by the triplet aperture ($a_{\rm mqx} = 140 {\rm mm}$)
- D1: round $r = a_{mqx}/2 + 7mm$
- TAS: round r = 30mm
- BPMs: round $r = a_{\rm mqx}/2$
- TAN: ellipse a, b = 41, 37mm
- D2 and MCBYY: rectellipse g, r = (37, 42)mm for 106mm coil aperture
- Q4: rectellipse g, r = (30, 35)mm for 90mm coil aperture
- BPMs D2, Q4, Q5: round r = 41, 37.5, 30mm

IR6

IR6

IR6

IR6 dump system features

name	dpxb1	dpxb2	dxb1	dxb2	bxb1	bxb2	byb1	byb2	dmuxb1	dmuxb2
					dump	dump	dump	dump	kick	kick
	murad	murad	m i	m	m	m	m	m	2pi	2pi
inj	0	-256	0.14	0.186	5012	5052	3955	3698	0.2631	0.2633
1111	0	-256	0.14	0.186	5012	5052	3955	3698	0.2631	0.2633
3333	0	0	0	0	5455	5867	4241	3699	0.25	0.25
4444	0	0	0	0	5743	6134	3955	3698	0.25	0.25
8228	0	0	0	0	5581	5820	6115	3698	0.25	0.25
5115	0	0	0	0	5012	5052	4063	3699	0.25	0.25
2882	0	0	0	0	7456	6818	3955	3698	0.25	0.25
1551	0	0	0	0	7244	6758	3974	3828	0.25	0.25

Without injection constraints optics can be optimized for the dump system. It is possible to attempt to improve inj and 1111.

- ▶ Similar to SLHCV3.0
- ▶ Effort to keep beta function unnecessarily large, magnet strengths not too close to lower limit, minimum changes with respect to nominal.
- ▶ For IR2 and IR8 phase advances probably not yet optimal.
- ▶ For IR4 Beta at the IP preserved as much as possible, to be checked for the damper and other instruments.
- ▶ IR3 and IR7 identical just rematched for the new arcs.

W functions: $W\delta = |\Delta\beta/\beta_0 + i(\Delta\alpha_0 - \alpha\Delta\beta_0/\beta_0)|$

W functions: $W\delta = |\Delta\beta/\beta_0 + i(\Delta\alpha_0 - \alpha\Delta\beta_0/\beta_0)|$

W functions: table

name		wx1	. wy1	l wx8	5 wy5	wx3	wyЗ	wx7	wy7
opt_150_11000_11000	b1	24	23	23	21	19	17	29	26
opt_150_11000_11000	b2	13	11	33	29	23	27	32	30
opt_150_5500_5500	b1	28	38	27	31	30	26	37	47
opt_150_5500_5500	b2	17	35	39	37	25	40	47	41
opt_150_2000_2000	b1	19	6	25	11	14	14	25	10
opt_150_2000_2000	b2	15	19	39	11	23	13	27	18
opt_150_0400_0400	b1	44	23	49	35	13	15	25	11
opt_150_0400_0400	b2	33	38	66	33	25	14	28	25
opt_150_0150_0150	b1	79	87	78	82	1	14	9	21
opt_150_0150_0150	b2	83	92	75	86	18	11	5	14
opt_150_0100_0100	b1	120	121	120	121	6	16	7	19
opt_150_0100_0100	b2	122	132	120	137	18	6	5	7
opt_150_0075_0300	b1	160	41	42	160	3	3	12	20
opt_150_0075_0300	b2	160	42	45	161	19	9	8	18
opt_150_0050_0200	b1	239	61	61	239	2	3	7	24
opt_150_0050_0200	b2	239	58	62	245	16	5	5	17
opt_150_0075_0300hv	b1	45	160	159	40	10	2	16	8
opt_150_0075_0300hv	b2	44	161	161	45	25	5	14	31
opt_150_0050_0200hv	b1	60	241	238	59	6	4	16	9
opt_150_0050_0200hv	b2	65	247	232	66	25	3	11	25

R. De Maria (CERN, Geneva)

R. De Maria (CERN, Geneva)

R. De Maria (CERN, Geneva)

Thin version for tracking

Target: generate sequence and optics using only thin elements (for symplectic tracking) as close as possible to the thick optics. Invariants:

- phase advances of arcs and IR
- twiss parameters at all IPs (including IR3 and IR7)
- selected quadrupole strengths for squeeze and injection.

Knobs:

- insertions quads
- KQF/D
- KSF,KSD
- orbit corrector (but not MCBX)

Directory listing

/afs/cern.ch/eng/lhc/optics/SLHCV3.1b

aperture beambeam errors toolkit iroptics tables readme slhc_sequence.madx slhc_removeinstall.madx crab_install.madx job_sample.madx job_makeoptics.madx job_makethin.madx opt_150_11000_11000.madx opt_150_5500_5500.madx opt_150_2000_2000.madx opt_150_0400_0400.madx opt_150_0150_0150.madx opt_150_0100_0100.madx opt_150_0075_0300.madx opt_150_0050_0200.madx opt_150_0075_0300hv.madx opt_150_0050_0200hv.madx opt_150_11000_11000thin.madx opt_150_5500_5500thin.madx opt_150_2000_2000thin.madx opt_150_0400_0400thin.madx opt_150_0150_0150thin.madx opt_150_0100_0100thin.madx opt_150_0075_0300thin.madx opt_150_0050_0200thin.madx opt_150_0075_0300hvthin.madx