

Quench Test strategy WG

Introduction

Mariusz Sapinski BI/BL

CERN, 16 March 2012

In past 3 teams actively interested in quench tests:

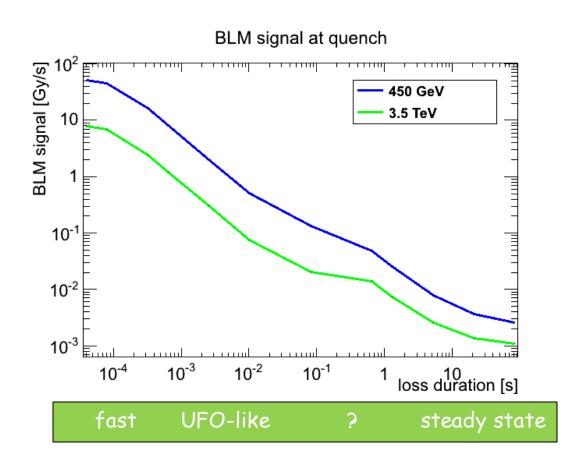
- BLM for thresholds
- Collimation for performance
- MPP

Different opinions concerning the methods to perform tests and interpretation of results.

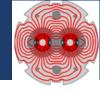
Just before Chamonix:

- Rudiger: proposal for quench limit workshop after summer
- Bernd: after summer is too late, we should meet and prepare tests before

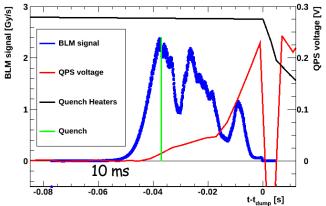
- Discuss the importance and plan in quite detail quench tests (to be performed in 2012) which are needed to operate LHC after LS1.
- Give coherent output to management.

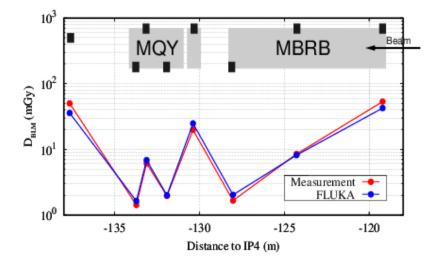

Meetings: about once per month

Close relation to Machine Protection Panel and BLM threshold WG.



3 main types




- Single turn losses at injection energy.
- 7 quenches of this kind:
 - On the ring: two in 2008, two in 2009, one in 2011 (LHC Proj Note 422)
 - Injection (many magnets involved): 2010 and 2011
- In addition a quench test when injected beam was dumped on collimator (TCLIB) - magnet current were ramped (increasing magnet sensitivity to quench) - no quench occurred. (ATS-Note-2011-067 MD)
 - FLUKA simulations soon; they will allow to understand the results (lack of quench).
 - In 2012 this test could allow to determine easily the QL(E_{beam}) for short losses (UFO quenches as a function of beam energy?).

- Highly recommended to be studied (Chamonix 2012 workshop) as UFOs ٠ can be limitation to lumi production after LS1.
 - Wire scanner quench test done in 2010
- Lack of UFO-generated quenches ٠

(ATS-Note -2011-062)

	energy density [mJ/cm ³]			
	FLUKA and experim ent	QP3, dry coil, FLUKA radial shape	Current method	
cable	11.6	15.6	70	
average				

Strategy A

- 1. Repeat wire scanner test with shorter duration
- 2. Perform orbital bump test on the same magnet with the same timescale (using ADT)
- 3. Results extrapolated to other magnets using FLUKA/G4+QP3 code

Advantages:

- 1. Detailed FLUKA simulation exists
- 2. Only way to asses directly difference between UFO and bump loss

Disadvantages:

- 1. MBRB magnet (4.5 K) is special -> QP3
- 2. MBRB only one spare -> end of run
- 3. Different geometry than for the arc ->FLUKA/G4

Strategy B:

1.

- i.e. increase BLM thresholds in cells with healthy splices and extra BLMs and wait for UFO to quench
- 2. Set BLM thresholds according to registered signal, get Quench Limit from FLUKA/G4

Advantages:

1. Real UFO quench

UFO fishing

We should not relay on this option only

Disadvantages:

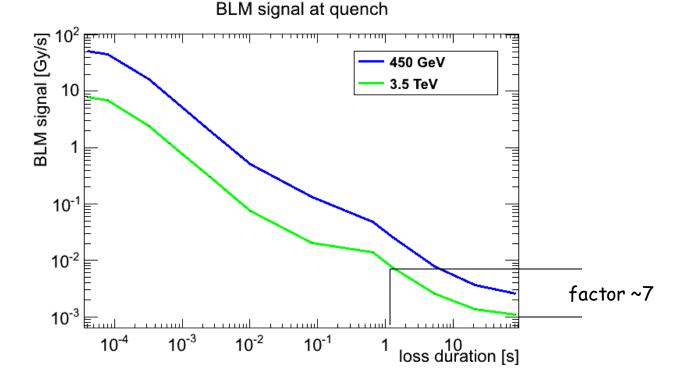
- 1. Quench may not happen
- 2. UFO location and size not well controlled
- 3. the FLUKA/G4 accuracy in terms of Quench Limit reduced

Strategy C:

- 1. Orbital bump test in millisecond scale with ADT on arc
- 2. Use FLUKA/G4 to extrapolate results to UFO-like loss

Advantages:

1. Arc magnet used (most abundant)


Disadvantages:

1. No direct testing of the difference between UFO and bump loss.

- LHC performance depends on steady state quench limit which remains not well known.
- During MD in 2011 we have reached nominal power on collimators without quenching for 1 s losses

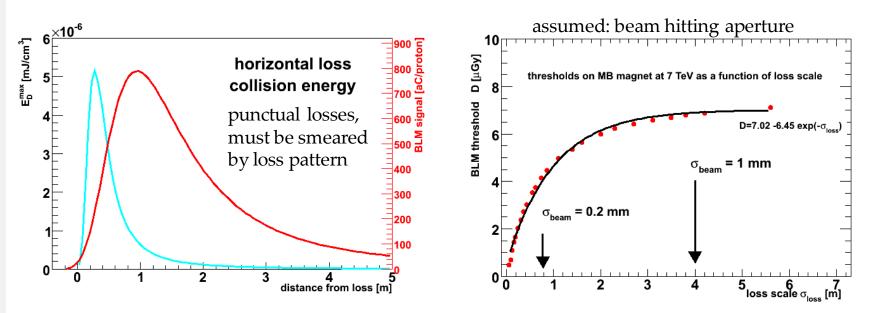
- Two complementary approaches are possible: orbital bump or dispersion suppressor.
- For me this is very important as we plan very-high lumi runs.

• Chamonix priority are UFO losses.

There are a few ways to investigate them.

- Steady state would be good to test.
- We have tools which may still turn to be very useful:
 - ADT
 - QPS scope
 - cryo measurements (K. Brodzinski, next MPP)
- Do we miss something?
 - 0.1 s losses: Ralph claimed they often appear in operation

THANK YOU FOR YOUR ATTENTION!


REST OF THE SLIDES ARE SPARE (CHAMONIX 2011)

BLM Quench Limit

- Quench Limit can be expressed in BLM signal [Gy/s] at which the magnet quenches.
- □ BLM signal (S_{BLM}) at Quench is: $S_{BLM} = R \cdot QL(E,t)$; $R = E_{BLM} / E_{coil}$

□ In most cases: $mJ/cm^3 \neq Gy/s \neq protons/s \neq W/m$

□ Considering all parameters QL determination accuracy is factor 2-3...

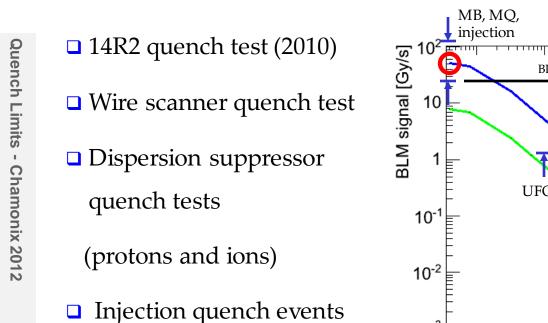
Quench list

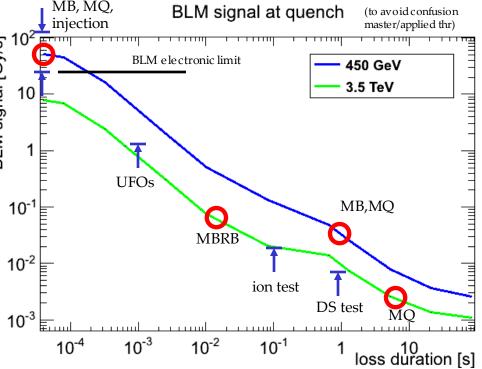
List of beam-induced quenches on sharepoint page <u>http://cern.ch/biq</u>

Up to now 13 quenches, 10-test, 3-injection events

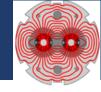
🚱 🛞 📋 cern.ch https://espace.cern.ch/BIQ/List of quenches/Forms/Default.aspx	्रि 🗸 🥝 🚼 🗸 statistical chisquare test site:root. 🔍 🖗
🗟 Most Visited 🗸 📋 LHC 🗸 📋 strona glowna/main pa 👍 AstroNEWS - Astrono 📋 FEPN - Festival Europ	🛂 Latest news, comment 🔳 Image Processing Tut
Seam Induced Quenches in the LHC	Welcome Mariusz Gracjan Sapinski 🗸 🛛 🞯
Beam Induced Quenches in the LHC	This List: List of quenche 🗘
Home	Site Actions 🗸

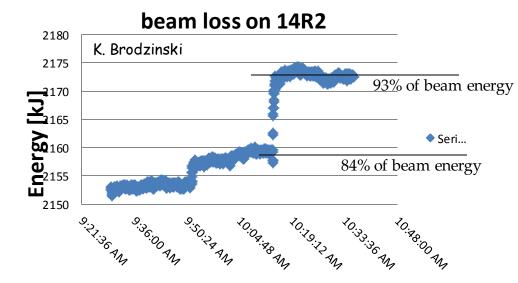
Beam Induced Quenches in the LHC > List of quenches


List of	quenches
---------	----------


View All Site	New •	- Upload - Actions -							View: D	efault •
Content Documents	Туре	Name	Modified	Modified By	Magnet	Location	E_beam	Duration	Beam	Plane
Shared Documents		2008-08-09 (00h19m51s)	03/08/2011 03:06 PM	Arjan Verweij	мв	8L3	0.45	ns	B1	V
 List of quenches 		2008-09-07 (15h34m05s)	03/08/2011 03:22 PM	Arjan Verweij	МВ	10R2	0.45	ns	B1	V
Papers		2009-11-20 (18h21m27s)	03/08/2011 03:24 PM	Arjan Verweij	мв	12L6	0.45	ns	B1	н
Lists		2009-12-04 (10h19m49s)	03/08/2011 03:36 PM	Arjan Verweij	МВ	15R2	0.45	ns	Bl	V
Calendar		2010-04-18 (10h33m41s)	03/08/2011 03:36 PM	Arjan Verweij	MB+	20R1	0.45	ns	B1	V?
Tasks		2010-10-06 (08h13m58s)	03/08/2011 03:36 PM	Arjan Verweij	MQ	14R2	0.45	ls	B2	V
Discussions		2010-10-06 (10h35m01s)	03/08/2011 03:36 PM	Arjan Verweij	MQ	14R2	0.45	ls	B2	V
Team Discussion		2010-10-06 (11h37m00s)	03/08/2011 03:36 PM	Arjan Verweij	МВ	14R2	0.45	ls	Bl	Н
Sites		2010-10-17 (18h23m14s)	03/08/2011 03:36 PM	Arjan Verweij	MQ	14R2	3.5	6 s	B2	V
People and Groups		2010-11-01(14h40m04s)	11/09/2011 12:26 PM	Mariusz Gracjan Sapinski	MBRB	5L4	3.5	20 ms	B2	-
manual a pice										

What have we learned from Quench Tests?

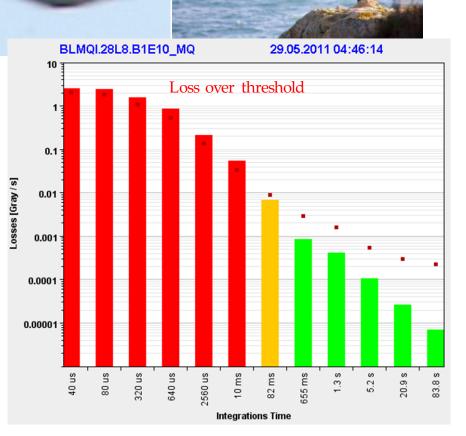



We measure BLM signals and lost beam intensity.

Monte Carlo simulations allows to conclude about Quench Limits [mJ/cm3].

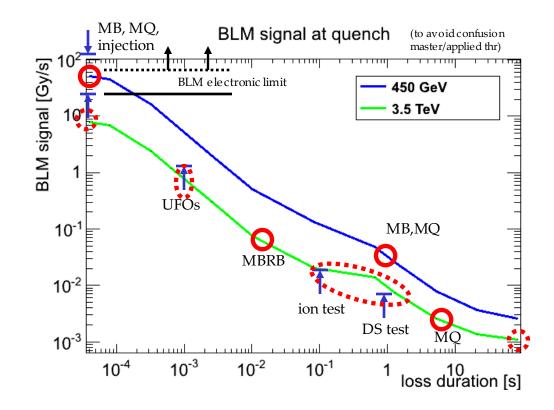
- □ It is proposed to repeat this test in 2012:
- Quench with raising orbital bump (better horizontal this time).
- 2nd ramp with orbital bump amplitude steered by BLM orbit feedback
 - at 50-80% of BLM signal of previous quench. Alternatively: bump + ADT blowup.
- Expected: steady-state loss lasting ~1 minute, without quench.
- Real steady-state quench limit determination in well-controlled , clean conditions.
- Cryogenic calorimetry and QPS scope measurements

	QPS	scope
sampling	500 S/s	20 kS/s
resolution	5 mV	0.3 mV


UFO quench fishing

- □ Need to know operational limit due to UFO quenches.
- □ It is proposed to raise BLM thresholds in given sectors and install additional BLMs in chosen locations (Q18,19 R3).
- □ Wait for the UFO-generated quench.
- Simulations are being prepared.
- □ More in Tobias' presentation.

Example of UFO in cold sector


which dumped the beam.

Chamonix 2013

BLM thresholds on cold elements:

quench limit BLM signal energy deposited in coil **T** $(E_b, L_s(x, y, z), L_t(t)) = \Delta Q (E_b, L_t(t)) * S_{BLM} (E_b, L_s(x, y, z)) / E_d(E_b, L_s(x, y, z))$

 $L_s(x,y,z)$ - spatial distribution of loss $L_t(t)$ - loss duration (or evolution timescale) E_b - beam energy

o) S_{BLM} is measured and simulated, E_d is only simulated, but accuracy of this simulation is controlled by S_{BLM} .

o) quench limits ΔQ are best known for fast transient losses (cable enthalpy)

and steady state losses (heat evacuation to cryogenic system) -

ΔQ in milisecond scale?

o) $L_s(x,y,z)$ corresponds beam impacting on the beam screen over many meters (240 µrad) – UFO is similar to loss generated by Wire Scanner