2nd ATLAS – South Caucasus Software/Computing Workshop & Tutorial

ATLAS Status and Development towards "Run2" (13 TeV)

Accelerator Detector Computing Physics

Hans von der Schmitt, Tbilisi, October 2012

Jörg Wenninger

Jörg Wenninger

Four large detectors (here: ATLAS)

MS Experiment at the LHC, CERN ata recorded: 2012-May-13 20:08:14.621490 GM

> Data acquisition system records individual events (here: Higgs→γγ candidate measured by CMS)

The LHC Accelerator Complex

Barrel Tor

We need three things...

Proton-Proton collisions at LHC – parameters 2012

High data rates and high event complexity

Detector status

ATLAS p-p run: April-June 2012											
Inner Tracker			Calorimeters		Mu	ion Spec	Magnets				
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid	
100	99.6	100	96.2	99.1	100	99.6	100	100	99.4	100	

All good for physics: 93.6%

Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at Vs=8 TeV between April 4th and June 18th (in %) – corresponding to 6.3 fb⁻¹ of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.

Trigger this year

(Main) streams sizes up to 3rd technical stop:

Stream	Egamma	Muons	JetTauEtmiss	Total prompt	Hadron delayed	Bphysics delayed	Total Delayed
Events (10 ⁹)	0.47	0.48	0.54	1.62	0.22	0.23	0.47
Average Rate [Hz]	110	110	120	370	50	50	110

Distribution of work on the Grid

WLCG - worldwide LHC computing grid CPU and storage capacity distributed around the globe

Worldwide LHC Computing Grid (WLCG): ~ 150 computing centres in ~ 35 countries

Total data volume used on disk and tape accumulated by ATLAS to date

Current status of computing

- Tier-o: keeping up well, using 6-7000 CPU cores, also done TS1 fast repro
- Tier-1 and 2: We can use much more CPU and some more disk than pledged thanks!
- Extended p-p run gives about 2* planned data volume covered by extra pledges and early deployment of 2013 resources - thanks!

Status and plans for Long Shutdown 1 (LS1)

- Running very well in 2012, but CPU limitations in MC production
- Extra resources for 2012 p-p run extension are under control: thanks to early deployment! (plus, had to reduce data distribution)
- Brief outline of our resource planning guidelines for 2013-2015:
 - In 2013:
 - There will be one full reprocessing of 2010-2012 data and MC to further improve the quality of our reconstruction and simulation.
 - (More) new MC for analysis will be produced.
 - Very active group/user analysis.
 - In 2014:
 - Largish MC samples for high energy running will be produced and related physics group/user analysis.
 - The final full reprocessing of 2010-2012 data and MC, foreseen to use the evolved event formatting/data model/data distribution prepared for 2015 high-energy data taking.

• In 2015:

- Processing and reprocessing of new high energy data.
- Related production of MC samples matching the data.
- Increased group/user activity.

Data placement

- In order to keep our disk space needs under control we have had to 'tune' down our disk usage (replication policies) and we are making plans to further optimize our Computing Model for 2015.
- A table summarizing the updated replication policy:

Tier-1 disk policy (sum Tier-1s) 2012 2013 2014 Sim RDO disk copies 0 0 0 Sim ESD disk copies (current) 0 0 0 Sim ESD disk copies (previous) 0 0 0 2 Sim AOD disk copies (current) 2 2 Sim AOD disk copies (previous) 0 0 0 Real RAW disk copies 1 1 1 0.2 0.05 Real ESD disk copies (current) 0.2 0.13 0.2 0.05 Real ESD disk copies (previous) 0 0 0 2 2 2 Real AOD disk copies (current) Real AOD disk copies (previous) 0 0 0 Real DESD disk copies 2-1 2-1 2-1 Tier-1 processing Number of reprocessing/year 1.51 1 1 Tier-2 disk policy (sum of T2's) 0.05 0.05 0.05 Sim RDO disk copies Sim AOD disk copies (current) 2 2 2 2 2 2 Sim AOD disk copies (previous) Sim ESD disk copies (current) 0.2 0.1 0.1 Sim ESD disk copies (previous) 0.2 0.1 0.1 0 Real RAW disk copies 0 0 2 2 2 Real AOD disk copies (current) 2 Real AOD disk copies (previous) 2 2 Real DESD disk copies 21 2-1 2-1 2-1 2-1 2-1 Real DESD disk copies (previous)

Extra copies of course! Popular data (group production, AODs..) replicated dynamically by PD2P

Summary of resource usage and needs 2012 extended to 2015, based on present sw release

LHC and ATLAS pa	urameters	Actual p-p (Mar-Aug 2012)	Revised model 2012 p-p	Model 2012 HI	Model 2013 p-p	Revised model 2014 p-p	Model 2015 p-p (25 ns, mu=19)
Trigger Rate	events/sec	350 (prompt) + 150 (delayed)	400 (prompt) + 200 (delayed)	200	0	1000 0	1000
Live Time	Msec total	3.8	3.8 7.3	0.7	0	1.6 0	3.8
Average pileup over fill	events	20	25	0	23	23	19
Real data (prompt only)	Bevents total	1.3	1.5 2.9	0.14	0	1.6 0	3.8
Full Simulation	Bevents total	2.4	1.9	0.01	4	2.5	2
Fast Simulation	Bevents total	1.4	2	0	4.6	4	5
Real RAW	MB/event	0.79	0.8	5	0.8	0.8	0.8
Real ESD	MB/event	2.4	2.5	3	2.5	2.5	2.7
Real AOD	MB/event	0.24	0.35	1	0.35	0.35	0.23
Simulated HITS	MB/event	0.9	1	5	1	1.6	1.6
Simulated ESD	MB/event	3.3	3.5	3	3.5	3.5	3.9
Simulated AOD	MB/event	0.4	0.5	1	0.5	0.5	0.5
Full Simulation	HS06sec/event	3100	3300	48000	3300	5400	5400
Fast Simulation	HS06sec/event	260	310	-	310	500	500
Real Reconstruction	HS06sec/event	210	230	480	230	230	230
Simulation Reconstruction	HS06sec/event	770	830	1200	830	830	830
Group analysis	HS06sec/event		20	20	20	20	20
User analysis	HS06sec/event		0.4	0.2	0.4	0.4	0.4

Luminosity of a hadron collider

N

Y

Parameters in luminosity

- No. of particles per bunch
- No. of bunches per beam
- No. of bunches colliding at IP $(k_c < k_b)$
- Relativistic factor
- Normalised emittance
- Beta function at the IP
- Crossing angle factor
 - Full crossing angle
 - **Bunch length** •
 - Transverse beam size at the IP

Hour glass factor: $F = 1 / \sqrt{1 + 1}$

 k_b Equal amplitude functions: k_c $\beta_x^* = \beta_y^* = \beta^*,$ Geometric and normalised emittance: $\varepsilon_x^* = \varepsilon_y^* = \varepsilon^* = \frac{\varepsilon_n}{\sqrt{\gamma^2 - 1}}$ \Rightarrow Round beams at IP: $\sigma_z \sigma^*$ $\sigma_x^* = \sigma_y^* = \sigma^* \quad \sqrt{\frac{\beta^* \varepsilon_n}{\gamma}}$ (N.B. LHC uses RMS emittances.)

ATLAS pushes for 25ns right from beginning of Run2 What if 50ns...

1.6		Linst (50) set =	1.00E+34		a): 25 ns	b): 50 ns	c): 50 ns, levelled	d): 50 ns, extend	levelled, ed fill	
1.4		Linst (25) set =	1.00E+34	Initial <µ>	24	2.86*24 = 69	2*24 = 48	2*24	= 48	
1 2				Average <u> over fill</u>	0.7*24 = 17	2.86*17 = 48	1.76*24 = 42	1.57*24	4 = 37	
1.2				Relative fill duration	1	1	1	1.4	.3	
1.0				Relative avgerage luminosity during fill	1	1.43	1.26	1.1	1	
Standard scenarios used in ATLAS 25ns / 50ns com										
0.6							s1): 25 ns	s2): 50 ns		
0.4						Initial <u></u>	27	2*27 = 54		
	- -	L25 peak var tau				Average <µ> over	fill 0.7*27 = 19	1.4*27 = 38		
0.2		L50 var tau			ApptrellX	Relative fill duration	on 1	1		
0.0		L50 levelled		TLAS Week at N	10111100,22	Relative avgerage		4		
Nuers, ATLAS WOON 25.00 25.00 Iuminosity during fill										
St	eve	Iviyor			,	LHC and ATLAS		Model 2015	Model 2015	
			Li	nst (50) set = 1.00E+34	tauL=	parameters		$25 \mathrm{ns}, \mu = 19$	$50 \mathrm{ns}, \mu = 38$	
					slone tau=	Trigger rate	event/sec	1000	1000	
50.00		•••••	Lir	nst (25) set = 1.00E+34		Livetime	10^6 sec total	3.8	3.8	
		•••				Fill-averaged pileup	events	19	38	
10.00						Real data (prompt only)	10^9 events	3.8	3.8	
40.00		•••				Full Geant4 simulation	10^9 events	2	2	
					• mu 2	Fast simulation	10 ⁹ events	5	5	
30.00			· · · · ·			Real RAW data	MB/event	0.8	1.2	
				••••		Real ESD data	MB/event	2.7	4.6	
						Real AOD data	MB/event	0.23	0.42	
20.00						Simulated HIT data	MB/event	1.6	1.6	
		*****			******	Simulated ESD data	MB/event	3.9	8	
		*******	*****			Simulated AOD data	MB/event	0.5	0.9	
10.00	+			*************		Full simulation CPU	HS06sec/event	5400	5400	
						Fast simulation CPU	HS06sec/event	500	500	
0.00						Real reconstruction CPU	HS06sec/event	230	420	
0.00 r	00	5 00	10	00 15.00 20.00	25.00	Simulation reconstructioi	in CPU HS06sec/event	830	1430	
Ľ		5.00	10.	15.00 20.00	23.00	Group analysis	HS06sec/event	20	20	
			[Duration of Fill (hours)		User analysis	HS06sec/event	HS06sec/event 0.4 0.4		

Luminosity and pileup today

Resource needs for after LS1 (2015): assume 1kHz, 25ns (but consider higher pileup – 50ns, or early 2-3e34)

• Assume we will have a flat monetary budget in future for ATLAS computing

- this message comes from WLCG and from the scrutiny group
- increase in Grid resources (disk, CPU, network) by technological progress
 - hope for extra centres (all Tiers!)
 - try exploit additional resources, e.g. in high-performance computing centres, Clouds
- Consequently, growing investment in software development required (from reconstruction to distributed computing)
 - change EDM, make efficient use of CPUs' vector units, caches, many-cores
 - promising development in WAN data access, event-level caching, and application driven network operation to help reduce overall disk volume needs

• Our credo: computing can't be the limiting factor in LHC physics results

- despite growing LHC demands and flat computing budgets
- need to optimise the usage of the given CPU and storage very substantially, with extra effort, and we ask the collaboration for extra institutional commitments
- need a long enough lead time for such development take full advantage of LS1 !
- the kind of software work involved should be very tempting to a few of you ...

Software & Computing plans for LS1

• A focus of the S&C workshop last week

• CPU speedup, software configuration and build - Reconstruction-type software

Data volume, resources management - ADC-type software

- New Distributed Data Management system being implemented
- WAN data access and data caching (file level, event level)
- Applications-driven usage of networks
- New MC production system
- Tier-o filtering/streaming
- Database cleaning-up

Simulation: Integrated Simulation Framework

- Selection of full/fast/... mode per subevent
- Speedup of G4 itself tackled by G4 collaboration (Geant4MT, ...)
- Concurrency within event
- Plus benefit from reconstruction speedup: offline sw improvements, truthseeding.

23.10.2012

ATLAS Operation & Upgrade – hvds

26

A slide on the new production system (Andrej Filipcic)

- A major re-design of a production system agreed upon
- Core components flexibility → a generic workflow engine, which could hopefully handle "any" future requirements
- Gradual implementation
- Much more flexible and automated system to be in place for the 14TeV operation
- The details will be discussed in the SW&C week in October. All people are welcome to participate. Input from Physics Community is essential.

A slide on the new Distributed Data Management (Vincent Garonne)

- 120 PB
- 350 million files
- 800 users
- 130 sites

- New major DDM version Rucio to ensure system scalability, reduce operational overhead and support new ATLAS use cases
 - Examples: Better support for group activities; use new technologies
- Timeline
 - 2011. Technical meetings with other LHC experiments User surveys, Collection of use cases, Rucio Conceptual model
 - 2012. Parallel and incremental development track Nov. 2012: First prototype with limited functionality
 - 2013. Preparation of migration from DQ2 to Rucio Preparatory steps, Functional tests Gradual migration of the external applications (e.g., PanDA)
 - 2014. Rucio in production after LS1

Integrated Simulation Framework (ISF) (Andi Salzburger)

Simulation Setups

 \mathcal{O} Full Geant4 (MC12, ISF)

G4 in all subdetectors

- \mathcal{O} **ATLFASTII** (MC12, ISF)
 - ID: Geant4
 - Calo: Geant4 for muons, FastCaloSim for everything else
 - MS: Geant4 (only muons can reach MS, everything else gets absorbed by FCS)
- \mathcal{O} **ATLFASTIIF** (under development, ISF only)
 - ID: Fatras
 - Calo: Fatras for muons, FastCaloSim for everything else (option to run parameterized punch-through simulation)
 - MS: Fatras
- \mathcal{O} **FastGamma** (under development, ISF only)
 - ID: Fatras for particles in cones around EvGen photons

Calo: FastCaloSim

23.10.2012

ATLAS Operation & Upgrade - hvds

Integrated Simulation Framework (ISF)

	ISF_Kernel::execute/evt	speed-up
O Full Geant4 measured with 10 events	560 s	1
<i>O</i> ATLFASTII measured with 100 events	25 s	~25
<i>O</i> ATLFASTIIF measured with 1000 events	0.75 s	~750
measured with 1000 events <i>O</i> FastGamma	0.18 s	~3000

Higgs couplings

More physics updates: see Open LHCC presentation, H.Bachacou, 26.9.2012

ATLAS Operation & Upgrade – hvds

Plan for the rest of this year p-Pb next year – LS1 starting 11 February 2013

	Oct				Nov			-		Dec			
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	1		15	22	29	5	12	Scrubbing	25 ns physics	3	10	¥ 17	24
Tu			$\overrightarrow{\mathbf{x}}$	Floating MD				25 ns set-up					Xmas
We		MD 3		[24 h] 500+ m									
Th				[24 h]								STAN	
Fr								MD 4				3174	
Sa							Scrubbing run						
Su							(date tbc)						

...but plans change quickly. At present, physics data taking instead of machine development:

Thanks to many people for the material ! including Steve Myers, Rolf Seuster, Andi Salzburger, Andrej Filipcic,

Borut Kersevan, Ikuo Ueda & the entire ADC team

Thank you for listening!

CERN was founded 1954 by 12 European states – today: 20 member states

Higgs combination Update since presentation at CERN Council of 4 July

H → evµv, 8TeV data

- Since July 4th, publication of observation paper including 8 TeV WW → evµv channel
 2.8 sigma excess in this channel
- 2.8 sigma excess in this channel alone (7+8 TeV data)

ATLAS publications

ATLAS: a detector for particle physics at LHC

Cover the whole angular range around the collision point to detect as many particles produced in the collision as possible.

LHC detectors are much more complex, performing and challenging than those at previous/present accelerators: a big jump in concepts and technologies

Size (length 45m, diameter 25m): to measure and absorb high-energy particles
Fast response (~50 ns): 20 (2015: 40) million beam-beam collisions per second
10⁸ electronic channels ("individual signals"): to track ~1000 particles per event and reconstruct their trajectories with ~10 µm precision

Data flow through the Tier-0 at CERN

Accepting data from the online system and ensuring it is archived to tape

Merging small files to adequate size for tape archiving

Processing RAW data (event reconstruction) and archiving the products to tape

- Express stream for prompt calibration and alignment
- First-pass processing of all streams after 36h with calibration and alignment

Registering data to the ATLAS Distributed Data Management system

Export data to Tier-I and calibration Tier-2s, as well as CAF

Maximum overall I/O: 6GB/s -- including internal accesses within Tier-0

Integrated Simulation Framework (ISF)

single-event simulation at 1 Hz is possible

scales linearly with pile-up χ^2 / ndf 0.2364/2χ² / ndf 0.5594 / 2 elative time **Truth Tracking** Constant 0.7983 ± 0.319 **New Tracking** 35 p0 0.8781 ± 0.4372 Slope 0.08469 ± 0.01588 0.1759 ± 0.03887 **p1** 30 truth bound reconstruction techniques should 25 be explored further 20 scales linearly with pile-up (hello, upgrade community) 15 10 this puts quite some 5 pressure on the digitization 0 5 10 15 20 25 0 30 mu

Tier-0 reconstruction this year

- Tier0 reconstruction coping well with luminosity / pile-up
- Tier0 capacity 6k slots. Increased to 7.5k for reprocessing of initial data during TS1 and during the ICHEP 'rush'.

ATLAS Operation & Upgrade – hvds