Results of beam tests 2011

CMS GEM Upgrade Workshop III 18-20 April 2012

Stefano Colafranceschi

Test beam motivations

- Evaluate performance of small and full-scale GEM based prototypes in muon and pion beams.
 - Comparison between single mask and standard double mask foils
 - Performance in intense magnetic field (3T)
 - Gas Studies (time and space resolution..)
 - Noise studies
 - New readout system (RD51 SRS)

Testing prototypes...

Small-prototypes

CMS_timing_GEM: Standard double mask 10x10cm² 1D readout (3/1-2/2/1-2); 256 channels 2010

SingleMaskGEM: Single Mask 10x10cm² 2D readout (3/2/2/2) 512 channels 2010

CMS_Proto_III Single Mask 10x10cm² [N2] (3/1/2/1); 256 channels 2011

Korean_I Double Mask 7x7cm² (3/2/2/2); 256 channels 2011

CMS_Proto_IV Single Mask 30x30cm² [N2] (3/1/2/1); 256 channels 2011

Full-scale prototypes

Full scale prototype GE1/1_I

The first full-scale prototype was build/tested in 2010

Full scale prototype GE1/1_II

Full scale prototypes

Single mask technique 1D read-out GEMs active areas: 990 mm x (220-445) mm Gas mixtures: Ar/CO_2 (70:30, 90:10) or $Ar/CO_2/CF_4$ (45:15:40, 60:20:20) Gas flow: 5 l/h

GE1/1_II vs GE1/1_I

Increased number of channels (from 1024 to 3072)
Reduced strip pitch

Reduced T1 and induction gap -> new HV divider!

2011 test beam campaign summary

June – July 2011

CMS_timing_GEM, GE1/1_I, GE1/1_II

- Efficiency, time resolution and space resolution with and without magnetic field

<u>August 2011</u>

CMS_timing_GEM, GE1/1_II

- Testing new electronics (RD51 SRS, APV25)
- Electronics studies with the VFAT2

<u>Septemebr 2011</u>

CMS_timing_GEM, GE1/1_II

- Time resolution studies
- Gas studies
- Electronics studies with the VFAT2

The experimental setup@H4 (SPS RD51)

The experimental setup@H2 (CMS-M1)

• 9

Timing studies@H4 (SPS RD51)

Ar/CO2/CF4 (45/15/40, 60/20/20)

Timing studies

Custom made HV divider for Standard Triple-GEM Clear effect of gas mixture, induction and drift field Timing resolution of ~4ns achieved

Single-mask studies

Single mask triple GEM **Detector** Configuration ٠ Strip pitch =0.4mm) Drift Gas mixture: • Ar/CO₂ (70/30, 90/10) Drift gap 3.25 mm Gas flow: ~ 5 l/h **GEM3T GEM3B** 2.215 mm T1 GEM2T GEM2B T2 2.215 mm GEM1T GEM1B 2.15 mm Induction gap Anode

Single Mask technology provides 100% alignment of the holes

- GEMs active area: $10 \times 10 \text{ cm}^2$ •
- 2D readout (256 ch on X, 128 on Y)
- Ar/CO2/CF4 (45/15/40, 60/20/20)

Single-mask studies

GE11_I from October 2010 TB

Data-taking focused on different points along the GE1/1. Preliminary results show good performance.

- •DATA TAKING SUMMARY
- 650 Runs all over detector surface p1, p2, p3, p5
- Gas used: Ar:C02 (70:30)
- HV SCAN with thr/latency scan (p1-5) [3.9 to 4.5 kV]
- Single mask small prototype HV scan (also thr./lat.)

GE1/1 in a strong magnetic field

Full scale prototypes and timing GEM were positioned in Y-Z plane inside the solenoid.

The tracker (3 10x10 single mask triple GEM detectors and 3 scintilators) were located among the X axis - 5 m before the magnet.

Beam direction along the (-) X axis.

Tracker in the front of M1 magnet H2 beam line at SPS (June 2011) Prototypes inside the M1 magnet – view from the side H2 beam line at SPS (June 2011)

GE1/1 in a strong magnetic field

- Displacement due to magnetic field measured at the beam matches with GARFIELD simulations.
- Increasing the magnetic field no clear effect is visible in the cluster size.

TURBO and VFAT2

The VFAT(TOTEM) is a digital on/off chip for tracking and triggering with an adjustable threshold for each of the 128 channels; it uses 0.25µm CMOS technology and its trigger function provides programmable "fast OR" information based on the region of the sensor hit.

Turbo board layout

For prototype testing we used electronics developed by INFN (Siena and Pisa), based on the TOTEM VFAT chip.

Efficiency studies along with VFAT2 comparator current (IC)

Fully efficiency is reached at gain ~7000 and VFAT2 threshold=12 for Ar/CO₂/CF₄ 45/15/40.

GE1/1 performance

Ge1/1_II behaved excellently with stable, safe and reliable operation!

Scalable Readout System (SRS) and APV25 chip

Data-taking with APV25

Data-taking with APV25

Tracker1 2D Hit Position Map with 28033 good events

hit position (mm)

Tracker1 X-Hit Distribution with 28033 good events

CMS GEM3 X-Hit Distribution with 28033 good events

Data-taking with APV25

Spatial resolution measurement using pulse height information

Assuming that Tracker 1 and Tracker 5, which share the same construction, have the same spatial resolutions ($\sigma_{v5} = \sigma_{v1}$) and that the beam divergence in y is negligible in the center, we have for the width of the Δy distribution $\sigma^2_{\Delta y} = \sigma^2_{y5} + \sigma^2_{y1} =$ $2\sigma_v^2$, or

$$\sigma_v = \sigma_{\Delta v} / \sqrt{2} = 53 \text{ um}$$

Events / 0.15 mm

250

200

150

100

50

16.2

Hit positions in x and y are computed from the mean (or "centerof-gravity") of the corresponding strip cluster using analog pulse height information for each strip.

It is a reasonable assumption that $\sigma_{x5} \approx 53$ mm if σ_{v5} = 53 um because the x and y strips in Tracker 5 have the same pitch, and an upper bound on the spatial resolution of the GE1/1-II prototype achievable with analog pulse height information can be established as $\sigma_{x GE1/1} \leq$ $\sqrt{(\sigma_{\Lambda x}^2 - \sigma_{x5}^2)}$, i.e.

$\sigma_{x \text{ GE1/1}} \leq 103 \text{ um}$ (in section with smallest strip pitch).

It is an upper bound as any remaining beam divergences in x will still contribute to the width of the Δx distribution below.

 $\textbf{15.39} \pm \textbf{0.00}$ 0.1159 ± 0.0019

24

16.5

2906

15.4

Conclusions and Plans for 2012

During 2011 we have consolidated our understanding of the performance of large area GEM detectors, we are going to start another challenging year with 4 test beam periods to test new prototypes with enhanced performance.

- 1) Commissioning of GE1/1_III&IV (NS2 technique)
- 2) GE1/1_III&IV validation of new ceramic HV divider (final layout)
 - 3) Measurement of timing properties (with/without magnet)
 - 4) Measurement of efficiency (with/without magnet)
- 5) Measurement of cluster size/occupancy (with/without magnet)
- 6) Measurement of space resolution function of strip pitch (with/without magnet)
 - 7) Chamber testing along with VFAT/APV chips and TURBO/SRS electronics
 - 8) Noise studies with new readout, new hybrids, new ground configuration
 - 9) Commissioning of new VFAT hybrid (for the SRS)

10) Gas studies

11) Detector 2D imaging/uniformity studies