"Feasibility of the detection of D⁰ mesons in the NA61/SHINE experiment" Yasir Ali

Jagiellonian University

On behalf of NA61/SHINE Collaboration

5[™] International Workshop On Heavy Quark Production In Heavy-Ion Collisions Utrecht

15th November 2012

Presentation Plan

- Physics motivation
- NA61/SHINE detector overview
- Input for simulation
- Vertex detector simulation
- Results and discussion
- Summary

Introduction

- A feasibility study of $D^0 \to K^+ \pi^-$ channel in central Pb+Pb collisions at the CERN SPS energies will be presented. The study is done for 158 AGeV and 40 AGeV
- The NA61 requires upgrade with a new vertex detector that will allow precise track and vertex reconstruction at the target proximity.
- The obtained results focusing on the predicted yields of D⁰ mesons and vertex detector optimization regarding its geometry and applied detection technologies

Physics motivation

- So far no direct open charm measurements at SPS energies
- Only J/Ψ has been measured at top SPS energy by (NA50 and NA60) experiments
- Open charm measurement provides unique opportunity to test the validity of p-QCD based and statistical models of nucleus-nucleus collisions at higher energies (Acta. Phy. Pol. B Vol 31 (2000))
- Differential measurements for open charm

NA61/SHINE detector – Top view

Beam detectors and triggering → A set of upstream scintillation or Cherenkov counters and beam position detectors, provides precise timing reference, charge and position measurement of the incoming beam particles

Time Projection chambers → Four large volume TPCs serve as tracking detectors

Time of Flight walls → Mainly used for Hadron Identification

Projectile Spectator Detector(PSD) → A Calorimeter which is positioned downstream of the time of flight detectors to measure energy of projectile fragments.

NA61/SHINE detector – Top view Vertex detector Position

6

Feasibility Studies

Physical Input

- → AMPT (A MultiPhase Transport model) event generator used to generate 200k Pb+Pb events at 158 AGeV for 0-10% centrality
- \rightarrow AMPT predicts 0.01 of <D $^0>$ + <D $^0>$ per central Pb+Pb event. this seems to be under-predicted value, e.g. PYTHIA run for N-N and scaled to central Pb+Pb gives 0.21 (P. Braun-Munzinger, J. Stachel, PLB 490 (2000) 196)
- → HSD Model predictions are consistent with scaled PYTHIA → We scaled AMPT predictions to be consistent with HSD and PYTHIA.
- → AMPT does not generate "Open Charm" at 40 AGeV, We assume open charm phase space distribution characteristic same as for 158 AGeV and yields as predicted by HSD model.
 - → Rapidity distribution and Invariant mass slope parameter does not change more than 10% for Kaons while going from 158 AGeV to 40 AGeV

AMPT: (Phys.Rev.C72:064901, 2005)

HSD: (Int. J. Mod. Phys. E17 1367)

PYTHIA: (T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001))

AMPT Event: Pb+Pb at 158 AGeV

- \bullet VTPCs filled with Ar-CO $_2$ mixture, location and dimensions as in NA61 setup.
- Uniform magnetic field: 1.5 T in VTPC-1 and 1.1 T in VTPC-2

Design of the Future Vertex Detector

Zoom in

beam pipe

Reconstruction

- Track distance in VTPC1 + VTPC2 > 1m
- Require hit at least in the three Vertex detector stations
- NA61/SHINE Momentum and Position resolutions are assumed
 - 1. momentum resolution $dp/p^2 = 7.0 \times 10^{-4} (GeV/c)^{-1}$ (Nuclear Instruments and Methods in Physics Research A 430 (1999) 210 244)
 - 2. position resolution is 10 $\mu m \rightarrow$ hits are spread in y and x around geant hit according to the Gaussian distribution ($\sigma = 10 \mu m$). Track line is taken from the fit to the spread points

Background Suppression strategy

- → Combinatorial background is very large → need to apply background suppression cuts.
- → Optimized to assure good signal Acceptance.

Single particle cuts:

- 1. cut on $\mathbf{p}_{_{\mathbf{T}}}$ (< 0.4)
- 2. cut (track impact parameter d ($< 40 \mu m$)

Two particle cuts:

- 3. Cuts in Armenteros-Podolanski space to remove background from $K_{_{\rm S}}$ and Λ
- 4. Two track vertex cut \mathbf{V}_{z} (< 500µm)
- 5. Reconstructed parent impact parameter cut $\bf D$ (> 22 μ m)

d [mm]

2. cut on Vz

 \rightarrow cut on **Vz** < 500 μ m as require

Spectrum after selection Cuts

Reduction of Background $\approx 10^6$

Reconstructed yield for $D^0 \rightarrow K^+ \pi^-$, 200k 0-10% cent. Pb+Pb at 158 AGeV

Reconstructed yield for $D^0 \rightarrow K^+ \pi^-$, 200k 0-10% cent. Pb+Pb at 40 AGeV

Beam Pos. Res (µm)	10	10	15	15
Beam hole(mm)	2.5	3.0	2.5	3.0
S_B	1.5	2.0	1.0	1.5
Signal Significance (SNR)	33.3	32.7	8.0	7.3
$\langle D^0 \rangle + \langle \overline{D^0} \rangle^{\bigstar}$	1846	1759	1769	1692

Vertex Detector Studies

δ-electrons and charge particles produced in Pb+Pb interaction

Delta electrons (averaged over 10k Pb events)

Particle Flux:

- During spill the anticipated beam intensity is 10⁵ Pb ions per second.
- For 200 µm Pb target interaction probability is 0.5% which leads to 500 Hz interaction rate

Hadronic interactions:

```
flux = (10<sup>5</sup> * 0.005) event/s * 1.6 particles/mm<sup>2</sup>/event = 800 particles/mm<sup>2</sup>/s = 800 Hz/mm<sup>2</sup>
```

Electromagnetic interactions (δ -electrons):

```
flux = 10<sup>5</sup> event/s * 0.04 particles/mm<sup>2</sup>/event = 4000 Hz/mm<sup>2</sup>
```

Rate of Flux is not critical, for the future detectors

Charged particles produced in Pb+Pb 0-10% central interactions

- High hit occupancy in the inner region (5 hits/mm²/event)
- Two Particle Resolution

 PIXEL Solution

Preliminary design of the 1st station

VDS1

Loss: 0.3% for 158 GeV

Loss: 3.0% for 40 GeV

Preliminary design of the 2nd station VDS2

Summary

- The Monte Carlo Simulations of D⁰ mesons decay into kaon + pion channel shows feasibility of collection of about 40K open charms in 50M events.
- The simulations have shown that the measurements of the D⁰ and D⁰ mesons in NA61 experiment with a dedicated vertex detector is feasible.
- In the next stage of the study, need to include the digitization in terms of realistic track reconstruction.
- Also the detection technology for the realization of the new vertex detector must be finalized.
- $^{\bullet}$ Measurement of $\Lambda_{\rm c}$ and improvement in the multi-strange hyperon measurement

BACK UP SLIDES

Parameters for 40 AGeV

For the studies at 40 AGeV energy the whole phase space (physical input) was not available by AMPT event generator.

Sigma → From the rapidity distributions for kaons at both energies 40 and 158 AGeV and for D0 meson at 158 AGeV respectively.

Sigma K(158)/Sigma K(40) = Sigma D(158)/Sigma D(40)

Temperature From transverse mass distributions By Fitting Exponential Function A Exp(-mt/T)

Kplus @ 40 AGeV

<u>Acknowledgments</u>

- → We acknowledge the support by the Foundation for Polish Science - MPD program, co-financed by the European Union within the European Regional Development Fund.
- → NA61 Collaboration
- → Division of Hot Matter Physics
 M. Smoluchowski Institute of Physics,
 Jagiellonian University, Krakow Poland

Detection Strategy

"Distance between interaction Point and decay point is measurable"

Meson	Decay Channel	$C\tau$	BR
D^{0}	$D^0 \rightarrow K^-\pi^+$	122.9 μm	(3.91 <u>+</u> 0.05)%
D^o	$D^0 \rightarrow K^-\pi^+\pi^+\pi^-$	122.9 μm	(8.14 <u>+</u> 0.20)%
$D^{\scriptscriptstyle +}$	$D^+ \rightarrow K^-\pi^+\pi^+$	311.8 µ m	(9.2 ± 0.25)%
D^+_s	$D^+_s \rightarrow K^+ K^* \pi^+$	149.9 µm	(5.50 ± 0.28)%
D^{*^+}	$D^{*+} \rightarrow D^0 \pi^+$		(61.9 <u>+</u> 2.9)%

The average multiplicity for 158AGeV is 0.01 * 1/0.0378 = 0.26 (consistent with HSD) for 40 AGeV it is 0.01

Detector overview in GEANT simulation

- \rightarrow VTPCs filled with Ar-CO $_2$ mixture, location and dimensions as in Na61 setup.
- → Uniform magnetic field: 1.5 T in VTPC₁ and 1.1 T in VTPC₂

Background suppression strategy (Need to discuss)

List of cuts in the order they are applied

Single particle cuts:

- 1. track **pT** cut
- 2. track **d** cut (track impact parameter)

Two particle cuts:

- 3. cuts in Armenteros-Podolanski space to remove background from Ks and $\boldsymbol{\Lambda}$
- 4. two track vertex cut **Vz**
- 5. reconstructed parent impact parameter cut **D**

1. cut on **pT**

Background pT spectrum has maximum around ~ 0.2GeV/c, wheres maximum of signal distribution is at around 1 GeV/c

→ cut on pT<0.4 as indicated</p>

3. cut on D

Vz cut reduces background at D ~ 0, where the signal is located → Vz and D cuts are nicely complementary to each other

 \rightarrow cut on **D** > 0.022 mm

Charged Particle Fluxes

Sources of particles hitting VD:

- 1. Charged particles produced in Pb+Pb interactions.
 - during spill the anticipated beam intensity is 10⁵ Pb ions per second.
 - for 200 μm Pb target interaction probability is 0.5% which leads to 500 Hz interaction rate
 - used AMPT to generate 100k min. bias Pb+Pb at 158 AGeV
- 2. Delta electrons produced mostly in target
 - study 10k Pb ions passing through the lead target
 - soft particles surrounding material might be important
 - production threshold cut in geant4: minimum distance that produced particle will travel in a given material → translates to cut on energy
 If the distance is (too) small a lot of soft particles is produced (CPU consumption)

If the distance is (too) large – important component might not be described

→ the influence of the production threshold cut has to be studied